a2 United States Patent

Micucci et al.

US009178753B2

US 9,178,753 B2
Nov. 3, 2015

(10) Patent No.:
(45) Date of Patent:

(54) COMPUTER IMPLEMENTED METHODS
AND APPARATUS FOR PROVIDING ACCESS
TO AN ONLINE SOCIAL NETWORK

(75) Inventors: Michael Scott Micucci, Larkspur, CA
(US); Aditya Sesha Kuruganti, Palo
Alto, CA (US); Theodore James
Summe, San Francisco, CA (US); Kedar
Doshi, Palo Alto, CA (US); Leonard
Gestrin, San Francisco, CA (US);
Sanjaya Lai, South San Francisco, CA
(US); George Wen Su, San Francisco,
CA (US)

(73) Assignee: salesforce.com, inc., San Francisco, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

(21) Appl. No.: 13/540,367

(22) Filed: Jul. 2, 2012
(65) Prior Publication Data
US 2013/0174275 Al Jul. 4, 2013

Related U.S. Application Data
(60) Provisional application No. 61/529,420, filed on Aug.

31, 2011.
(51) Int.CL
GOGF 21/62 (2013.01)
HO4L 12/24 (2006.01)
HO4L 29/06 (2006.01)
HO4L 29/08 (2006.01)
HO4W 4/20 (2009.01)
(52) US.CL
CPC oo HO4L 41/06 (2013.01); HO4L 63/10

(2013.01); HO4L 63/104 (2013.01); HO4L
67/1044 (2013.01); HO4W 4/206 (2013.01)

(58) Field of Classification Search
CPC ... HO04L 12/185; HO4L 67/00; HO4L 67/02;
GOG6F 17/3089; GOG6F 21/62; GOG6F 21/604;
GOG6F 21/6218
USPC .ot 709/219; 726/19, 27
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,577,188 A 11/1996 Zhu
5,608,872 A 3/1997 Schwartz et al.
5,649,104 A 7/1997 Carleton et al.
5,715,450 A 2/1998 Ambrose et al.
5,761,419 A 6/1998 Schwartz et al.
5,819,038 A 10/1998 Carleton et al.
5,821,937 A 10/1998 Tonelli et al.
5,831,610 A 11/1998 Tonelli et al.
5,873,096 A 2/1999 Limet al.
5,918,159 A 6/1999 Fomukong et al.
(Continued)
OTHER PUBLICATIONS

“Google Plus Users”, Google+Ripples, Oct. 31, 2011 [retrieved on
Feb. 21, 2012 from Internet at http://www.googleplusers.com/
google-ripples.html], 3 pages.

Primary Examiner — Joseph P Hirl

Assistant Examiner — Kalish Bell

(74) Attorney, Agent, or Firm — Dergosits & Noah LLP;
Todd A. Noah

(57) ABSTRACT

Disclosed are systems, apparatus, methods, and computer-
readable storage media for providing access to an online
social network. The online social network can be specific to
an organization having one or more internal users. In some
implementations, a request message is received from a
requesting user to access social network data of the online
social network. The requesting user is identified as an external
user of the organization, and it is determined that the request-
ing user has an authorized status. Access to only a portion of
the social network data is provided to the authorized request-
ing user.

24 Claims, 34 Drawing Sheets

Tenant Storege Space

Application MetaData

Tenant Data Storage.

"Abpcaton

Mechanism 38

Setup Tenant Management || System

Process 16
02

Tenant 1 [Tenant 2 TenantN
Process || Process | ** | Process
28

104

US 9,178,753 B2

Page 2
(56) References Cited 7,698,160 B2 4/2010 Beaven et al.
7,730,478 B2 6/2010 Weissman
U.S. PATENT DOCUMENTS 7,747,648 Bl 6/2010 Kraft et al.
7,779,039 B2 8/2010 Weissman et al.
5,963,953 A 10/1999 Cram et al. 7,827,208 B2 11/2010 Bosworth et al.
5,983,227 A 11/1999 Nazem et al. 7,853,881 B1* 12/2010 Aly Assal etal. 715/734
6,092,083 A 7/2000 Brodersen et al. 7.945,653 B2 52011 Zuckerberg et al.
6,169,534 Bl 1/2001 Raffel et al. 8,005,896 B2 82011 Cheah
6,178,425 Bl 1/2001 Brodersen et al. 8,073,850 Bl ~ 12/2011 Hubbard et al.
6,189,011 Bl 2/2001 Lim etal. 8,082,301 B2 12/2011 Ahlgren etal.
6,216,133 Bl 4/2001 Masthoff 8,095,413 Bl 1/2012 Beaven
6,216,135 Bl 4/2001 Brodersen et al. 8,095,531 B2 1/2012 Weissman et al.
6,233,617 Bl 5/2001 Rothwein et al. 8,095,594 B2 1/2012 Beaven et al.
6,236,978 Bl 5/2001 Tuzhilin 8,103,611 B2 1/2012 Tuzhilin et al.
6,266,669 Bl 7/2001 Brodersen et al. 8,150,913 B2 4/2012 Cheah
6,288,717 Bl 9/2001 Dunkle 8,209,333 B2 6/2012 Hubbard et al.
6,295,530 Bl 9/2001 Ritchie et al. 8,275.836 B2~ 9/2012 Beaven et al.
6,324,568 Bl 11/2001 Diec et al. 8,407,577 B1* 3/2013 Franklinetal. 715/208
6,324,693 Bl 11/2001 Brodersen et al. 8,782,121 Bl 7/2014 Chang
6,336,137 Bl 1/2002 Lee et al. 2001/0044791 Al 11/2001 Richter et al.
D454,139 S 3/2002 Feldcamp et al. 2002/0072951 Al 6/2002 Leeetal.
6,367,077 Bl 4/2002 Brodersen et al. 2002/0082892 Al* 6/2002 Raffeletal. 705/8
6,393,605 Bl 5/2002 Loomans 2002/0129352 Al 9/2002 Brodersen et al.
6,405,220 Bl 6/2002 Brodersen et al. 2002/0140731 Al 10/2002 Subramaniam et al.
6,411,949 Bl 6/2002 Schaffer 2002/0143997 Al 10/2002 Huang et al.
6,434,550 Bl 8/2002 Warner et al. 2002/0162090 Al 10/2002 Parnell et al.
6,446,080 B1 9/2002 Brodersen et al. 2002/0165742 Al 11/2002 Robins
6,535,909 Bl 3/2003 Rust 2003/0004971 Al 1/2003 Gong
6,549,908 Bl 4/2003 Loomans 2003/0018705 Al 1/2003 Chen et al.
6,553,563 B2 4/2003 Ambrose et al. 2003/0018830 Al 1/2003 Chen et al.
6,560,461 Bl 5/2003 Fomukong et al. 2003/0066031 Al 4/2003 Laane et al.
6,574,635 B2 6/2003 Stauber et al. 2003/0066032 Al 4/2003 Ramachandran et al.
6,577,726 Bl 6/2003 Huang et al. 2003/0069936 Al 4/2003 Warner et al.
6,601,087 Bl 7/2003 Zhu et al. 2003/0070000 Al 4/2003 Coker et al.
6,604,117 B2 8/2003 Lim et al. 2003/0070004 Al 4/2003 Mukundan et al.
6,604,128 B2 8/2003 Diec et al. 2003/0070005 Al 4/2003 Mukundan et al.
6,609,150 B2 8/2003 TLee et al. 2003/0074418 Al 4/2003 Coker et al.
6,621,834 Bl 9/2003 Scherpbier et al. 2003/0120675 Al 6/2003 Stauber et al.
6,654,032 Bl 11/2003 Zhu et al. 2003/0151633 Al 8/2003 George et al.
6,665,648 B2 12/2003 Brodersen et al. 2003/0159136 Al 8/2003 Huang et al.
6,665,655 Bl 12/2003 Warner et al. 2003/0187921 Al 10/2003 Diec et al.
6,684,438 B2 2/2004 Brodersen et al. 2003/0189600 Al 10/2003 Gune et al.
6,711,565 Bl 3/2004 Subramaniam et al. 2003/0204427 Al 10/2003 Gune et al.
6,724,399 Bl 4/2004 Katchour et al. 2003/0206192 Al 11/2003 Chen et al.
6,728,702 Bl 4/2004 Subramaniam et al. %88%833%33 ﬁi 1%882 VRVatrﬁler et a{ |
6,728,960 Bl 4/2004 Loomans et al. othwein et al.
6,732,095 Bl 5/2004 Warshavsky et al. 2004/0010489 Al 1/2004 Rio et al.
6,732,100 Bl 5/2004 Brodersen et al. 2004/0015981 Al 1/2004 Coker et al.
6,732,111 B2 5/2004 Brodersen et al. 2004/0027388 Al 2/2004 Berget al.
6,754,681 B2 6/2004 Brodersen et al. 2004/0128001 Al 7/2004 Levin et al.
6,763,351 Bl 7/2004 Subramaniam et al. 2004/0186860 Al 9/2004 Leeetal.
R 2004019045 AL 102004 Basnes-L onetal
6,768,904 B2 7/2004 Kim arnes-L.eon et al.
6,782,383 B2 8/2004 Subramaniam et al. 2004/0199536 Al 10/2004 Barnes Leon et al.
6,804,330 B1 10/2004 Jones et al. 2004/0199543 Al 10/2004 Braud et al.
6,826,565 B2 11/2004 Ritchie et al. 2004/0249854 Al 12/2004 Barnes-Leon et al.
6,826,582 B1 11/2004 Chatterjee et al. 2004/0260534 Al 12/2004 Pak et al.
6,826,745 B2 11/2004 Coker 2004/0260659 Al 12/2004 Chan et al.
6,829,655 Bl 12/2004 Huang et al. 2004/0268299 Al 12/2004 Lei et al.
6,842,748 Bl 1/2005 Warner et al. 2005/0050555 Al 3/2005 Exley et al.
6,850,895 B2 2/2005 Brodersen et al. 2005/0091098 Al 4/2005 Brodersen et al.
6,850,949 B2 2/2005 Warner et al 2005/0210102 Al 9/2005 Johnson et al.
6,907,566 Bl 6/2005 McElfresh et al. 2008/0249972 Al 10/2008 Dillon
7,062,502 Bl 62006 Kesler 2009/0063415 Al 3/2009 Chatfield et al.
7100111 B2 82006 McElfresh et al. 2009/0077636 Al* 3/2009 Duffie, ITI 726/5
7,269,590 B2 9/2007 Hull et al. WHIC, L e
7340411 B2 32008 Cook 2009/0080635 Al* 3/2000 Altbergetal. 379/216.01
P 2010/0042511 Al 2/2010 Sundaresan et al.
T by 52008 McElfresh etal. 2010/0122220 Al* 52010 Ainsworthetal. ... 715/366
7.406.501 B2 7/2008 Szeto et al. 2011/0113096 Al 5/2011 Longetal.
7,412,455 B2 8/2008 Dillon 2012/0075264 Al* 3/2012 Kiesetal. ... 345/204
7,454,509 B2 11/2008 Boulter et al. 2012/0233209 Al* 9/2012 Chengetal. 707/770
7,529,741 B2 5/2009 Aravamudan et al. 2012/0290407 Al 112012 Hubbard et al.
7,599,935 B2 10/2009 La Rotonda et al. 2013/0073989 Al 3/2013 Harris et al.
7,603,331 B2 10/2009 Tuzhilin et al. 2013/0173798 Al 7/2013 Micucci et al.
; ,gig,gg g% 1%8(1)3 %varsson etlal. 2014/0337361 Al 11/2014 Gailis
K s eyer et al.
7,668,861 B2 2/2010 Stezz/en * cited by examiner

US 9,178,753 B2

U.S. Patent Nov. 3, 2015 Sheet 1 of 34
(2 26
N N /-
Tenant System Program
Data Data Code
Storage Storage
17
— L r %8
f1 8 | Processor
System Process Space
Application 2
Platform 0 \
Network System 16
Interface

Environment
10

User
System
12

Figure 1A

User
System
12

U.S. Patent Nov. 3, 2015 Sheet 2 of 34 US 9.178.753 B2
/22
T —
= — 123
. | Tenant Storage Space 112
System : il
Data User Storage —~ 114
Storage
: 25 Application MetaData [— | T~ 116

Tenant Data Storage

> 16

Application
Setup Tenant Management System
Mechanism 38 Process Process
110 102
Save
Routines 36
Tenant 1 || Tenant 2 Tenant N
PL/SOQL Process || Process Process
34
— 1 o4 —— 28
API 32 Ul 30
Ty, ~ - _ _ _ — -—
~ ~ -~ — -
Appl. 1004 Appl. }~100y
Server GEERREEERE Server —~
Environment
10
12
D ppe 12
Processor Memory
System 12A | | System 12B | -
nput | Output Figure 1B
System 12C System 12D 9

U.S. Patent Nov. 3, 2015 Sheet 3 of 34 US 9,178,753 B2

) 0 -fz‘“’
216 C 232
ore 228
Switch 1 d [— 248

: §\/ SW|tch = é /_ 256
' A Database
\ / Load . A 20f2 Storage

= i Balancer Active DB Switch
212—" Edge Core “—224 Firewall ~ (10f2)
Router 2 Switch 2 Switch 4 236
~aV " ®_200
Figure 2A
236
244
Switch 4
E[288
E\) 268 ﬁ
Content >
Batch & | \2 8 =
Servers 8 282 280 App
- < r Servers
Content s J 286 S./"J
290 Servers Query & f =)

A(fS Servers

Servers g
File Force _Servers
Database
Servers 290,W

Instance -

292 L \§] Database
N - / \'&Jk - Instance
v Indexers
QFS
VR
228
N 296 ZQSN W
s e
~ =~ Fileforce
Load NFS

Balancer Figure 2B Storage

U.S. Patent

310 ——| Database system receives a

320 ——] Database system writes new

340
\ Add feed update to feed of first

Nov. 3, 2015 Sheet 4 of 34

request to update a first record

l

data to first record

|

Generate feed update

l

record

l

350
) Identify followers of first record
360 —] Add the feed update to a news feed of

each follower

l

Follower accesses his/her news feed
and sees the update

Figure 3

US 9,178,753 B2

r— 300

US 9,178,753 B2

Sheet 5 of 34

Nov. 3, 2015

U.S. Patent

— 2.4nbi
[37 4 H
(4amoj|0y)
b 1asn puooag 9
pJooal 1950
10 poay puC JO PO8}
10, 150nboy 1oy 1senbay 010} 7%
oy K Sev \
Wwa)sAg aseqeleq a|1joid
aseqgele(9|lJold Jamoj||04
G
=5 . ajepdn
aseqgele(Po9} MON
1008y ajepdn
P v po9) MaN
Sev JA%Z
pJ009Y z (s)10ss89201d Sov
BIEp MON) ol] lasn is.i
\ X PJ029Y
0} a1epd
0zh 1 8)epan

U.S. Patent Nov. 3, 2015 Sheet 6 of 34 US 9,178,753 B2

510 ——

Database system identifies an
action of a first user that triggers
an event

l

520

——]

Does the event qualify for a
feed update?

No

Stop

l Yes

530 —

Generate feed update about the
action

l

540

—_—

Add feed update to feed of first
user

l

550 -~

Identify followers of first user

l

560 —

Add the feed update to a news
feed of each follower

|

570 ——

Follower accesses the news
feed and sees the feed update

Figure 5

U.S. Patent

Nov. 3, 2015 Sheet 7 of 34

610 —

Database system receives a
message associated with a user

l

620 —

Add message to a feed (e.g. as
a profile feed) of the user

l

630
N

Database system identifies
followers of user

l

Add the message to a news feed
of each follower

l

Follower accesses a news feed
and sees the message

|

Database system receives a
comment about the message

l

Add comment to the news feed
of each follower

Figure 6

US 9,178,753 B2

»— 600

US 9,178,753 B2

Sheet 8 of 34

Nov. 3, 2015

U.S. Patent

/ @inbi4

‘dopisap Aw Buijjas ynoqe Bunjuiy)
‘s1apndwiod AUBLW 00} aAry |

swepe”wes FH

iAEPO} ooqiau mau Aw J09
sziunrew uua FH

"joojau Mau aU} 89S 0) JIem
1.ueD ‘Buudg siy) s|eap swosame
yum 1o Buiwoo si 18 pJesy |

swepe”wes

‘dnolb e se
moJ|o} o} sbuiyy o sidoad pui4

losi] v @05 (3) Buimoyjo4

(L]
5
e

>

[0Sl v 98s (@) ssequiay

O sbumss Jequisw
@ sBumes dnoab

_ JUSLULLON B SR _

Nd 8¢ 'Aepisisa A
"9U0 AJUO BY) $}] "DNAS JOPpUN JBUBNUI BY} UO SI BJY BY] J8neg ||ig

A 8Lt Aepisjso A
‘Buiesye|y Ul BOISSOr O} 3B} ‘PUNOIE YSE ||| 9100 Aley

Wd 8E: ABPIBISOA [AJ ‘BOUIS SBLUl
M3} B PO)Ipasl U9 SBY }| (IUSIUOD Ul 094D NOA pIp ‘9Ins JouQ Uoxeg sewef

WNd 81:¥ 'Aepiolse A 1817 @jeald
I sey |1ig »uly | uosuyor eji3 wes) Ay Q u

Y

swwos wdy g w somunpoddo @u
ocL £80. DNAS WO 109D S10UASY 81 aARY SUOAUR s50(SMIeH Jased {0) p— @
/ONN _ A spelio 3]
002 ‘€7 Joq Lo1do:
‘SIBQLUBLU WES} S0IA0U BJow oYy | “era i
10} o|qepead Aloa si ‘yidep 1o 1iq e aynb ojul ob jou saop) ybnoyye

.63 "o

*$89UISNY N0 JO sjuaUodLuod Buikliopun oy} SBUIRNO JUSLUNJ0P SIYL $HOOQIIN 1BHeD Yoiees d
(1dd) peojumoq MmaIp syooqiaN — sjyBisu| sannedwod sgmee |

TUSIIoS wWd| 1:g syoogiaN — siybisu| miEﬂ:oO “Juswnoop auy paysod sey Janeg |ig @
olLL 600Z ‘vz Ainr Aepo

E\)\)J ol [J nurigy uoeny

— —— & U0 Bupjiom noA mcmum;>>~ mmmguDﬂ__\/_oo
ASNHAID

. S

"Alanoae sIoW ZAX Isulebe 9jadwioo 03 Sh MO||2 (1A JeY) UojelLIojUl aieys o) soe(d

dnoipy sannedwo) ZAX

pno|D SolES)

nofo7 disH dnjeg suIeH Jayied

spieoqyseq suodey senunioddo sjoejuo) mE:ouo<E ayoid AW ewoH

dd10/Safes

US 9,178,753 B2

Sheet 9 of 34

Nov. 3, 2015

U.S. Patent

g aunbi4

[Juswwoy e alpm |

Nd 92+ ‘Aepiaise A
“ABejens ssnosIp o} Juem noA Ji Bull e sLu 8AID “1eak 1SE| JUNODOE SIY) UO payiom | Uaxied AeH Jeneq |iig (L °)

U0y wd||:g ¢80, DNAS WO J08p ejoukay ay) 8ARY 8UOAUR $80(] SLUIBH Jeyled

EmEEoOEa:”mimEmHmm> WA
JUN022R ZAX# SUi Uo ay| Aisieq doyde| punode uonadwod ybnoy swos Bumab a4.opn YseN oug Db

800Z ‘€Z AInr Aepisyse)

JuBWWOD B oM |

Wd 8€:Z1 ‘Aepiaise A ‘abus|eys e aq o) bulob s suo siy} ‘se s ddey ayer @\

A

AY 8111} ‘Aepusysah Buisalsiul WWH meT eoug WR’

UBoD) Wel ;. ‘AepiaisaA W -Aunpoddo# uo 1onpoid g pnojD soialeg Jno aio(dxs o) sjuem ZAX Jeneg |ig @

JUSUILIGD We| | /) ‘Aepleisa
MeZ L-Anunuoddo# uo [eaosdde uoy papiugns usaq jsnl sey Junoasip e s3aBpipg 0001 — “@2U] ‘ZAX %

/ ‘vz Aine Aepo
018 6002 ‘¥Z AInr AepolL

E\I\)J alld[J yur & yoemy

— 4Uo Bupjiom noA ale ymc>>u

(1) 199eys & «

MezL-Aunpoddo &

ﬁ uig spkasy Dw
Jepusien

s196pIM 00021 — Bway €
sjebpip

000G - Woo'8dlo)sses %

W09 80U0JSB|BS B

ooy b

yowoag o [y

D163 OOUEAPY
umo | swey o ywir [

Iy YyoIess]
yaleas

&

spieoqyseq syodoy RECRINIGTLELIGM sjopuo) sjunosay sdnoun sjyoid Al awioH

pno|d seeS] jnobo7 djsH dmes slueH Jsved

d010/SoEs

U.S. Patent Nov. 3, 2015 Sheet 10 of 34 US 9,178,753 B2

Event Object Created by Event Comment Time/
ID 911 ID 912 ID 913 ID 931 932 Date 933
“ 10-21-2010
E1 0615 us E37 532 PM
E2 0489 U101 E37 .o 9-17-2010
) Event History Table 910 ’ Comment Table 930
Event Old value New Event Post Text Time/
ID 921 922 value 923 ID 951 952 Date 953
10-11-2010
E37 300 400 E69 4:12 PM
E37 423 410 EQO “ 8-12-2010
Field Change Table .
920 Post Table 950
User ID Object
941 ID 942 User Event
usg19 0615 ID 961 ID 962
usg19 0489 U819 E37
U719 0615 Us19 EQO
User Subscription U719 E37
Table 940

News Feed Table
9260

Figure 9A

U.S. Patent Nov. 3, 2015 Sheet 11 of 34 US 9,178,753 B2

’/" 900

901 — Receiv_e one or more properties of
an object stored in the database
system
902 Receive one or more criteria about

" which users are to automatically
follow the object

more properties of the object
satisfy the one or more criteria for
a first user

|

904 ~_ If the criteria are satisfied, the
object is associated with the first
user

903 \ Determine whether the one or

Figure 9B

U.S. Patent

1020 —

1030
N

Nov. 3, 2015

Sheet 12 of 34

Receive data indicative of an

event

Determine whether the event is
being tracked for inclusion into
feed tables

l

Write event to an event history

table

l

1040
\

Update field
change table

l

US 9,178,753 B2

Update post
table

/ 1050

|

Receive a comment for an event
and add to a comment table

Figure 10

U.S. Patent Nov. 3, 2015 Sheet 13 of 34 US 9,178,753 B2

1110 —| Receive a query for an events
history table

1120 — Check to determine if the user
can view the record feed

|

1130
\ Check field level security table to
determine whether the user can
see particular fields

1140
\ Display feed items to which the
user has access

Figure 11

U.S. Patent

1210 Y user for an events history table

1220 — second user can see first user’s

1230 — check on specific feed

1231 —~ number of matching entries from

Nov. 3, 2015 Sheet 14 of 34

Receive a query from a second

to see a first user’s profile feed

'

Perform security check whether

profile feed

:

Perform a security

items

'

Retrieve a predetermined

the event history table

l

1232 —

Organize the record identifiers by type and
check whether the second can see the
record types

1233 — If can see type, then proceed to check

1234 —] Use field sharing rules to determine if

1235 — Repeat steps 1231-1234 until a

l

access for specific records

l

certain fields are not viewable

l

stopping criteria is reached

Figure 12

US 9,178,753 B2

— 1200

U.S. Patent Nov. 3, 2015 Sheet 15 of 34 US 9,178,753 B2

— 1300

1310 — Receive data indicative of an
event

|

1320 —— Determine objects
associated with the event

l

1330] Determine users{ollowing the
even

l

Write followers of the event along
with an event identifier to a news
feed table

|

1350 ———_| Receive a request for a
news feed from a user

|

Access news feed table and other
tables to generate feed items for
display

1340 —~

1360 —\

Figure 13

U.S. Patent Nov. 3, 2015 Sheet 16 of 34 US 9,178,753 B2

1400
-

Receive one or more criteria
specifying which feed items are to be
displayed to a first user

1420 — Identify feed items of one or more
selected objects that match the criteria

Display the feed items that
1430 - ~ match the criteria to the first user
in the custom feed

Figure 14

U.S. Patent

Nov. 3, 2015 Sheet 17 of 34 US 9,178,753 B2

1500
/‘

online social network

Gomputer implemented method for providing access to a)

1516
/-
Stop

1504
/-50

Receive request message from a
requesting user to access social
network data of the online social
network, where the online social
network is specific to an organization
having one or more internal users

l /-1 508

Identify requesting user as
an external user

Does
the requesting user
have an authorized
status?

1512

Provide access to only a portion of the
social network data to the authorized
requesting user

Figure 15

U.S. Patent Nov. 3, 2015 Sheet 18 of 34 US 9,178,753 B2

1600

Computer implemented method for providing access to an
online social network

1604
/‘

Receive request message from a requesting user to
access social network data of the online social
network, where the online social network is specific
to an organization having one or more internal users

l /-1608

ldentify requesting user as an external user

1612

Does
the requesting user
have an authorized
status?

~ 1620
Provide access to only exposed data of the social
network data to the authorized requesting user,
including providing the exposed data in an external
user presentation capable of being displayed on a
display device

v /1 624
Receive message from the authorized external user

Provide message as an information update for
inclusion in a group feed

Figure 16

U.S. Patent

Nov. 3, 2015 Sheet 19 of 34 US 9,178,753 B2
Computer implemented method for authorizing an external
user with a group of an organization
— 1704
Define group parameters:
« designate group type as private
« enable external users option
17
l —1708

Invite external user:

« retrieve email address of desired
external user

« send invitation email including
embedded link to retrieved email address,
where embedded link identifies the defined

group

¢ 1712

External user receives email and
clicks on link to accept invitation

¢ 1716

Perform registration process for establishing
an external user login ID and external user
profile

— 1720

Establish external user as authorized member|
of defined group identified by embedded link,
including associating external user profile
with the group

¢ 1724

Grant external license with limited access of
group data to authorized external user in an

external user presentation of group page

Figure 17

U.S. Patent Nov. 3, 2015 Sheet 20 of 34 US 9,178,753 B2

1800
f

Computer implemented method for providing limited access to group
data in an external user presentation of a group page

1802
/—

Authorized external user logs into group A

+ /- 1804

Display limited chatter tabs (e.g., people, groups, files) for external user of
group A

+ /—1808

External user can view limited chatter tabs

+ /-1812

External user clicks on groups tab to request to view groups

* s 1816

Identify all groups in addition to group A of which external user is a
member, excluding other groups of organization

« identify click as associated with user ID

¢ access group membership table

« retrieve all rows having the user ID, where each row identifies a
particular group of which the external user is a member

* f 1820

Display list of identified group names

+ /- 1824

External user clicks on a displayed group name

* r 1828

Generate external user presentation of group data of requested group
» identify click as associated with an external user
» access requested group table
» retrieve all rows having the external user flag, where each row
stores a different component of group data

* /- 1832

Provide external user presentation for display on a display device

Figure 18

US 9,178,753 B2

Sheet 21 of 34

Nov. 3, 2015

U.S. Patent

V6L @inbi4

A— 70061

pbci6l

TUJUSLULLOD B 8JUAA

‘pasn sauaw auyy uonsanb | Ing ‘aspouon Alan AqsBiry uosipep

Nd 00:20 1 L 10Z ‘¥g Udlen

(4ad) peojumoa 5P maInQ] — =
yosuneT jonpoid Ag oijel] ajg

17 JUBWWOD INd 00:£0 18 L LOZ ‘g UdJe

~—

‘el & pappe yled uyap

oI JUBWIWOD N 00:£0 1€ AepoL

L6l
. o (4ad) peojumog F moin Y]
HoUNETIONPOId A8 SWELL SHS Jonpuod Jo sapo) moquadng | 1.
1oNpuUOo? J0 S8poD |Mmogladng E
‘9|l e pappe 1ebeueioslold uea|
(2} Iy moys .Ma__n_ dnoig
ZE61 QNFQF a7 JuBWWOD Wd 00:20 1& Aepol
‘uonewojul dnaufi pabueyo sabeuepioalold uea|
ezZL6}L a7 JuBLWOD Wd 00:20 1€ Aepo |
‘dnoig Auedwo) ssolD 0} ssaooe pafiueyo Jebeuepyjosfoid uea|
(€) v mous J sloquisiy E g end O yoeny
8¢6l
teumo P _ s1S9n9) pue WU 198l0id ypm Emcw_
vy
en_wz 806/ JUSLIBOUNOULY PPY VD@F\\ wniuuajii uow_.o.hn_

A diaH A 18beueposlolg uea)

‘Imogladng Buunp Buiyoune) a1 am
1onpoud mau e si, wniuua|jipy 1alold,

b4 0Z61 1\ uonduosaqg

HBQUIOY BUM|
1oBjUOD ‘suonsanb sy 104

UIp qa4 enp s)esse [euld «
"w9 9@ Sl JUsAd youneT «
'

b4 snejaq py Imoguadng
1441

sbumas llewd AN B
9161 l/ sbumeg dnoin [}

{ 3\

Loz - v -z
SYX3IL 'NOLDNITHYV

dnolo jeulsix3 £ B
~PE6L

.

\

so|ld IRLLILY eidoed ejyoid Jepeyd

AV Yorees)

JONOYI

US 9,178,753 B2

Sheet 22 of 34

Nov. 3, 2015

U.S. Patent

g6 04nbi14 »— 50061

‘|mogladng Bulnp Buiyoune| a.om
jonpold mau e si wniuud||iy 308loid,

“ 0261 .\ uondussaqg

Wequioy euu|
Jo)uUoD ‘'suonsenb Jayuny o4

Yl g4 anp Sjasse [BUlH e
19 984 SI JUBAB LDUNET «
I

& s|iejeq py [moquedng

youneT 1onpold Ag ougel] ays E. |24 A
10NpuUog Jo sapo) mogledng @. sbumes lew3 AN XK
(@ v mous %w_i dnoig 9.6l l/ sBumoeg dnois 3
cE6L gz 161 SIT WBLILIOD Wd 00:£0 18 Aepo] p \

‘uonewuopul dnolf pabueyo 1ebeueyiosfold uea|

LLoz - v - 2
SYX3IL 'NOLONITHY

eZL6L I uBLWIWOD Wd 00:20 Je AepoL
‘dnoig Auedwon ssoln 0} ssaooe pabueyo sebeuepiosiold uea|

E Wi erd [yseny

— sjsens pue Wniuua||ijy jo9fold yim Em;m_

oa_wI wQQFKEmEmoc:o::,q ppy @QQF:\ wniuusjiin uom.qo.hn_ L dnois jeweixy LB

sa|id EELLLILY sidood oyoid Janeyd

A disH A Jabeuepslold uea) R cn:mwmu -e.' G‘ K

US 9,178,753 B2

Sheet 23 of 34

Nov. 3, 2015

U.S. Patent

061 8nb14

— 00061

r S JUSWWOD Nd 00:L018 L LOZ ‘¥Z UoIe

vG6i I/

bNEFA (4ad) pecjumeq G maIA D] — =
mmmwwm_\/_ youneT jonpo.d Ag oujel] a)g)
9lBAlId pUSS \ a1y & pappe yled uyor
{ o7 ualIWoD N 00:20 e Aepol

youneT jonpold Ag oyjel] als E

1NpuoD Jo sepog |mocadng [Zh UNFQFA

(2) v mous 8]14 dnoin
AN FM

(4ad) peojumog _w_ >>¢_>,@_
JoNpUo) 1o s8poY Mmogledng | 1 EE—

‘3] & pappe Jabeuepioafoid uea|

Evmh.\ R aciel

‘uoieLlojul dnoib pabueys ssbeuepiosfold uea|

a7 JUsWWoD Wd 00:201e Aepol

i E E ezL6)

dnols) Auedwon ssolD) 0) ssa0ok pabueyo Jebeuepioslold uea|

SYIT JUBLULCD N 00:L0 1e ABpoL

(€) Iy mous slaquialy

a7 WBWWoD Wd 00:20 1 Aepol

(4ad) peojumea F mein Y]

oses|d ‘pe mocuadns 1o) sisosse Jsoje| Aw s 2loy (1sang) Jasneulaixy aippa

sjessy |moqledng
‘wb "de4 Ag suonsafibns Adoo ppe

‘moguedng Buunp Buiyoune| alam
jonpoud mau e sl wniuuajiy 108lold,

026,/ uondussea

Hequioy euu|
10BJUOD ‘sUolsanb Joypny Jo4

Uiy qa4 anp SI9sse [BUl e
"1 994 S11USAS youneT «
1

\ site1aq pv |moqiedng

m\\mhl/ sbumoeg newsz AN B
ﬂ \

Loz - ¥ - T
S¥YX3L ‘NOLDNITHY

0r6! -/

mm@éL

L Pl SH [yoeny

§)s8N9) puB WNUUS|IA 108l0id Yiim omew_

@ deH QOhk

womh\\

wniuud|IN 109foad

dnouo ewsix3 B
~E6L

A disH A lsbeueposlold uea|

solld IELLILE oldoad ajpoid Jeneyd

TS JOROYPLY

US 9,178,753 B2

Sheet 24 of 34

Nov. 3, 2015

U.S. Patent

Yoz @inbi4 4 V0002

0¢0c
r

“Auedwoo JnoA spIsINo woy psppe ag ued siaquaw 1ssns dnoug euseixg @

910¢ ‘uiof 0y panoidde aq jsnw noA pue sajepdn 88s UED slaquisll AluQ 8jeAlld O
‘uiof ued suoAue pue sajepdn MaIA Ued dUoAIaAT alland O

uonduosag

‘mogladng Bunp Buiyoune| aJ,om jonpold mau e si uniuusjiy 10slold,

QDDNI/ﬂ__ Jabeuelpioalold uea) m @..wEsO
wniuus|ijy Josfoid aweN dnoug
r00¢

H _mu:mou ~ a1919Qq H _ aneg _

@ abed sy} Jo} djoH

SUOISSaSYIONN 9 Smalnay ubisaq Jeneyn ™

1p3 dnoug

A disy

A Jabeuepslold uea|

LI eidosd ajyold J8pey)d

o) JOPOYR

US 9,178,753 B2

Sheet 25 of 34

Nov. 3, 2015

U.S. Patent

g0z 9inb14

931918Q

UBA| ‘syuBy}
dnoJB Aw uiof ases|d "aul| ysiul ay) 0) 186 0} djay swios pasN
slpp3l 'H

abessoy

wooAuedwodayio@Iasn|eulaix3aippe

0z

US 9,178,753 B2

Sheet 26 of 34

Nov. 3, 2015

U.S. Patent

002 24nbi4

‘sajelg
PeIUN 'SOLFG 'vD ‘0asIouRI] UBS ‘00E SINS ‘19Nl SUQ @ MUVINANY 1 8YL "OUr'wod 80J0fsejes
TONEIISNAYM/CD TONE YD MMM)]-SATY :1e)jey)) asn o} sAem Jeall awos Jno 3osyD

ZONUDIGISIIEY D/ UI00 90I0)SO[ESEEU]; SANY Ul SIY} %91]0 ‘UoepAul Siy3 jdaooe o

]
0807 .\ UBA| ‘SyUBRY]

dnouB Aw uiol aseald aul| ysiuy ay; 0y jab 0} djay aLuos pasy

alpp3 IH
:sfAes sabeuepyjosfold uea|

W02’ 8010JS9[eS

Je 818%I0M02 JNOA Y)im 8JeI0CR||0D 0} JepeyD asn
0} 8|ge aq 0s[e ||.noA "sa|l} pue sayepdn s,dnolf
QU 0) $$9008 UIED 0} Ulor ‘winiud||I J08foid
dnoub 1apeyD sy} 0] NOA pajIAUl YIS UBA|

N
¥G0c ‘ &”” G ‘ DI0/80BS

XO4dNI s.31da3

Jojoequo))

dOLsIA

US 9,178,753 B2

Sheet 27 of 34

Nov. 3, 2015

U.S. Patent

viz oinbld

»— V00ic

youne jonpoid Ag ouedt ong [
1onpuoy Jo sepog imoguadng [,

(2) 1w mous sa|i4 dnoio
s)sang

ol —
(€) v moys sloquialy
wwono (B8

@ dieH

“TUIUSLULUOD B 91LAA

INd 00:20 18 LLOZ ‘2 Uosei
‘pasn soujaLu ayy uonsanb | Ing ‘asipuoo Aloa AqsBry uosipep

. Vv
i Juswwod Nd 00:4018 1108 ¢ Ydie

(4d) peojumog 5 MaIATD] e L
ysuneT jonpoid >m dlyel] ajg =
“allj & POPPE Wied uyor

I slWoeY INd 00:L0 Ye Aepol

(4ad) peojumoa F maIn]

‘|moguadng Buunp Buyoune| aJ,sm
jonpoid mau e si wniuug|ipy 108loid,

uondussag

Hequioy eul)
10BJUOD ‘suolsanb 1oylny 104

yip god4 onp sjosse [euld »
‘w9 G494 S11U9AD YyouneT »

19Npuo) Jo S9P0Y |Moquadng | 1HE--

‘ali} & poppe JaBeuepioafoid uea|

a7 jusWwWo) Wd 00:20 ¥ Aepol
-‘uonewlojul dnolfi pabueyo 1abeuepiasfold uea)

8417 sWWod Wd 004 Aepo
‘dnois) Auedwon ssou)) ssaooe pabueyp Jobeueioalbid uea|

Wwng eid [J yoepy

s}sON9) pue Wniuus||iy J08(oid yjim m._msm_

winiuuajI 109foad

adpsH A JBS[BUISIXT BIppT

sjie3aq py Imoquadng

sbumes lewz A

Lioz - v -z
SYX3IL ‘NOLBNITNY

dnoug jeusoyxg B

so|id RLUILY ojdoad oyoid Jeneyd

D) hgﬂﬂ G‘ E

US 9,178,753 B2

Sheet 28 of 34

Nov. 3, 2015

U.S. Patent

g1z 04nbi4

A— 90012

o1do) e Lelg

soido) Buipuail

e dioH

T JUBLULLIOD B SJLUAA _

ajeled Nd £0:50 18 LL0Z '#2 UdIel
iiiuo 11 Bung Aes | Jepisu| ejeges|

av13a N £0:50 18 LLOZ ‘¥Z Uoe
‘abus|eyo e aq || eyl ‘Auedwoo ssolo s)nsal yoseas Buixepul punose
Op 0} YJ0M SWIOS BABY SM YUILY OP | 'JEYI INOqE Jqnop oN JeBeuepioalold uea|

8)eleg M7 WeLWOeD Nd £0:50 Je Aepol
‘Aem Buo| e off pjnoys ‘sjuswaaoidiul Jsaje)
BU} 10} 8uUoAIaAs SURY] Japisu| Bllages| — sjuswiasoldw| Yyoiesg e)Isqep

TTTIUSLULLOD B BIMAA

Wd €0:50 Je Aepo]
‘Bey JybuAdoo ayy apnoul 111~z 34nbi4 ‘Z apiis Aqsbiy uosipep

Wd £0:60 1& Aepo)
(spiom omj jou) mogladng, Aes 0) spnial :g-g ainbi4 ‘g apl|S yed uyor

<.
8jaja@ oy WBWWOD Wd £0:50 18 ABpo]

(4ad) peoumoa F meinP]
sjassy |moquadng

‘wb "ded Aq suonsabifins Adoa ppe ases|d “pe |mogladns
3y} Jo} 51S95SE 1521 AW S 218 JosN(eulsix] aippT - wniuud|i 19afoid

(9]

)

sdnoub Aw wou) sarepdn

m:\N\A mm,,hw vm—hm om_,\\m @N.FN viie

écle

salld O]
a0l @

= sabessapy

J8s[eue)xy eippy

AdieH A Jesnj[ews)xg aipp3

s8|l4 sdnoun eojdoed eljoid JPLIENEY

Ay ;oamwu ﬁeﬂﬂ G‘ %

U.S. Patent Nov. 3, 2015 Sheet 29 of 34 US 9,178,753 B2

2200
/—
C)omputer implemented method for providing alerts in aD

online social network

2204
/-

Receive an indication of an action
associated with providing data to the
online social network

l /—-2208

Identify a group associated with the
indication of the action

/-2216 2912

Stop

Does
the identified group include
any external users?

~ 2220

Provide an instruction to display an
alert notification at a computing device

Figure 22

U.S. Patent Nov. 3, 2015 Sheet 30 of 34 US 9,178,753 B2

_— 2300

Computer implemented method for providing alerts
in an online social network

| _— 2304

Receive an indication of an action associated
with providing data to the online social network

Y _— 2306

Identify one or more information feeds in which
the provided data will be presented

©Of the identified information
feeds group feeds or otherwise
associated with
a group?

Yes

external group flag or othe
parameter of associated groups —
do any of the groups include
any external
users?

Stop

Yes 2320

Determine a format or a content of an alert
notification

¥ —2322

Provide an instruction to display the alert
notification at the computing device

Has action
stopped or been
suspended for a designated
time period?

Figure 23

Provide an instruction to stop displaying the
alert notification at a computing device

U.S. Patent Nov. 3, 2015 Sheet 31 of 34 US 9,178,753 B2

2400
/-

Computer implemented method for providing alerts in an
online social network

2404
/‘

Receive an indication of an action
associated with providing data to a
recipient user of the online social
network

2416
/‘
Stop

attribute of recipien
user — is recipient user an
external user of the

Provide an instruction to display a
generated alert notification at a
computing device

Figure 24

US 9,178,753 B2

Sheet 32 of 34

Nov. 3, 2015

U.S. Patent

GZ a4nbi4

‘\\wNmN

9¢sc
™ B1Ep SIy) 89S AW

806}
\\

N ssesn |euloixg

E SNINIVM
0zse gzcz

zLs2 8052
\lll\{ll.r./ \l’l\f'\.}
T B S =

9167 —Lp

| u 1 iNIvOV 1odau siy Buueaijep aje| st aipp3

#0527~

A disH

wniuua|Ip 309foid

so|l{ JELLILY ojdoed ejyoid Jepeyd

A1V YIS) -Qﬂﬂ G‘ E

US 9,178,753 B2

Sheet 33 of 34

Nov. 3, 2015

U.S. Patent

° dieH

salld

9z @inbi4
919z — Puss |
Slasn |eulalxa Y1im [eap 0297 9
SMO QIBUS }UO ~—¢49¢
220 N D8V aJeys LuoQ _
ININTYM [ge 1eay noA pig jeipp3 AeH
0292 obessop
8092 — SMON DGV UIM JoBJUOD MaN |109fang
£097 — lasn|euis)xg aippg 0]
3DeSSI 91CAlIg

sdnoig BELEEN

sold

JeneYD

Cuouess | A"l iEeg) hgﬂﬂeg E

US 9,178,753 B2

Sheet 34 of 34

Nov. 3, 2015

U.S. Patent

1Z @anbi4

chlc

:\E ¥2l2 0cle

Jasn |eulo)xe
ue si jned

ONINHVM

| uoseesal yexseW JuBORL BY)
a)elodiooul pjnoys sAnB noA “1asn|eulalx3 ined @

9462y
oy JBWWYD Wd 00:2 1e Aepoy

022~
(40d) peojumog ' meIA D]

sjossy |mog Jadng

804¢ .\

"*'ppe ases|d ‘pe |mog Jedng 1oy
sjosse Jsaje| AW s 219 “(}seng) Jasn|eulsixy sipp3

@ disH

00/l¢ .\

so|l{ QELLIGN ojdosd s|yoid Jepeyn

Ay sohmmwu -eﬂﬂ G‘ E

US 9,178,753 B2

1
COMPUTER IMPLEMENTED METHODS
AND APPARATUS FOR PROVIDING ACCESS
TO AN ONLINE SOCIAL NETWORK

PRIORITY AND RELATED APPLICATION DATA

This application claims priority to co-pending and com-
monly assigned U.S. Provisional Patent Application No.
61/529,420, titled “Methods and Systems for Providing Cus-
tomer Groups in a Network Feed Hosted by an On-Demand
Services Environment”, by Micucci et al., filed on Aug. 31,
2011 (Attorney Docket No. 763PROV), which is hereby
incorporated by reference in its entirety and for all purposes.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material, which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

TECHNICAL FIELD

This patent document relates generally to providing on-
demand services in an online social network using a database
system and, more specifically, to techniques for controlling
access to information in the online social network.

BACKGROUND

“Cloud computing” services provide shared resources,
software, and information to computers and other devices
upon request. In cloud computing environments, software can
be accessible over the Internet rather than installed locally on
in-house computer systems. Cloud computing typically
involves over-the-Internet provision of dynamically scalable
and often virtualized resources. Technological details can be
abstracted from the users, who no longer have need for exper-
tise in, or control over, the technology infrastructure “in the
cloud” that supports them.

Database resources can be provided in a cloud computing
context. However, using conventional database management
techniques, it is difficult to know about the activity of other
users of a database system in the cloud or other network. For
example, the actions of a particular user, such as a salesper-
son, on a database resource may be important to the user’s
boss. The user can create a report about what the user has done
and send it to the boss, but such reports may be inefficient, not
timely, and incomplete. Also, it may be difficult to identify
other users who might benefit from the information in the
report.

BRIEF DESCRIPTION OF THE DRAWINGS

The included drawings are for illustrative purposes and
serve only to provide examples of possible structures and
operations for the disclosed inventive systems, apparatus, and
methods for providing access to an online social network.
These drawings in no way limit any changes in form and
detail that may be made by one skilled in the art without
departing from the spirit and scope of the disclosed imple-
mentations.

10

15

20

25

30

35

45

50

55

60

65

2

FIG. 1A shows a block diagram of an example of an envi-
ronment 10 in which an on-demand database service can be
used in accordance with some implementations.

FIG. 1B shows a block diagram of an example of some
implementations of elements of FIG. 1A and various possible
interconnections between these elements.

FIG. 2A shows a system diagram illustrating an example of
architectural components of an on-demand database service
environment 200 according to some implementations.

FIG. 2B shows a system diagram further illustrating an
example of architectural components of an on-demand data-
base service environment according to some implementa-
tions.

FIG. 3 shows a flowchart of an example of a method 300 for
tracking updates to a record stored in a database system,
performed in accordance with some implementations.

FIG. 4 shows a block diagram of an example of compo-
nents of a database system configuration 400 performing a
method for tracking an update to a record according to some
implementations.

FIG. 5 shows a flowchart of an example of a method 500 for
tracking actions of a user of a database system, performed in
accordance with some implementations.

FIG. 6 shows a flowchart of an example of a method 600 for
creating a news feed from messages created by a user about a
record or another user, performed in accordance with some
implementations.

FIG. 7 shows an example of a group feed on a group page
according to some implementations.

FIG. 8 shows an example of a record feed containing a feed
tracked update, post, and comments according to some imple-
mentations.

FIG. 9A shows an example of a plurality of tables that may
be used in tracking events and creating feeds according to
some implementations.

FIG. 9B shows a flowchart of an example of a method 900
for automatically subscribing a user to an object in a database
system, performed in accordance with some implementa-
tions.

FIG. 10 shows a flowchart of an example of a method 1000
for saving information to feed tracking tables, performed in
accordance with some implementations.

FIG. 11 shows a flowchart of an example of a method 1100
for reading a feed item as part of generating a feed for display,
performed in accordance with some implementations.

FIG. 12 shows a flowchart of an example of a method 1200
for reading a feed item of a profile feed for display, performed
in accordance with some implementations.

FIG. 13 shows a flowchart of an example of a method 1300
of storing event information for efficient generation of feed
items to display in a feed, performed in accordance with some
implementations.

FIG. 14 shows a flowchart of an example of a method 1400
for creating a custom feed for users of a database system using
filtering criteria, performed in accordance with some imple-
mentations.

FIG. 15 shows a flowchart of an example of a method 1500
for providing access to an online social network, performed in
accordance with some implementations.

FIG. 16 shows a flowchart of an example of a method 1600
for providing access to an online social network, performed in
accordance with some implementations.

FIG. 17 shows a flowchart of an example of a method 1700
for authorizing an external user with a group of an organiza-
tion, performed in accordance with some implementations.

US 9,178,753 B2

3

FIG. 18 shows a flowchart of an example of a method 1800
for providing limited access to group data in an external user
presentation of a group page, performed in accordance with
some implementations.

FIGS. 19A-C show examples of group pages in the form of
graphical user interfaces (GUIs) configured to be accessible
by different users of an organization, according to some
implementations.

FIGS. 20A-C show examples of GUIs associated with
authorization of an external user with a group of an organi-
zation, according to some implementations.

FIG. 21 A shows an example of a group page in the form of
a GUI configured to be accessible by internal users of an
organization, according to some implementations.

FIG. 21B shows an example of a page in the form of a GUI
configured to be accessible by authorized external users of an
organization, according to some implementations.

FIG. 22 shows a flowchart of an example of a method 2200
for providing alerts in an online social network, according to
some implementations.

FIG. 23 shows a flowchart of an example of a method 2300
for providing alerts in an online social network, according to
some implementations.

FIG. 24 shows a flowchart of an example of a method 2400
for providing alerts in an online social network, according to
some implementations.

FIG. 25 shows an example of a publisher component dis-
played in a group page in the form of a GUI, according to
some implementations.

FIG. 26 shows an example of a pop-up window for gener-
ating a private message in a GUI, according to some imple-
mentations.

FIG. 27 shows an example of a post in an information feed
as displayed in a GUI, according to some implementations.

DETAILED DESCRIPTION

Examples of systems, apparatus, and methods according to
the disclosed implementations are described in this section.
These examples are being provided solely to add context and
aid in the understanding of the disclosed implementations. It
will thus be apparent to one skilled in the art that implemen-
tations may be practiced without some or all of these specific
details. In other instances, certain process/method operations,
also referred to herein as “blocks,” have not been described in
detail in order to avoid unnecessarily obscuring implementa-
tions. Other applications are possible, such that the following
examples should not be taken as definitive or limiting either in
scope or setting.

In the following detailed description, references are made
to the accompanying drawings, which form a part of the
description and in which are shown, by way of illustration,
specific implementations. Although these implementations
are described in sufficient detail to enable one skilled in the art
to practice the disclosed implementations, it is understood
that these examples are not limiting, such that other imple-
mentations may be used and changes may be made without
departing from their spirit and scope. For example, the blocks
of methods shown and described herein are not necessarily
performed in the order indicated. It should also be understood
that the methods may include more or fewer blocks than are
indicated. In some implementations, blocks described herein
as separate blocks may be combined. Conversely, what may
be described herein as a single block may be implemented in
multiple blocks.

Various implementations described or referenced herein
are directed to different methods, apparatus, systems, and

20

25

35

40

45

50

65

4

computer-readable storage media for providing access to an
online social network, also referred to herein as a social
networking system. One example of an online social network
is Chatter®, provided by salesforce.com, inc. of San Fran-
cisco, Calif. Online social networks are increasingly becom-
ing acommon way to facilitate communication among people
and groups of people, any of whom can be recognized as users
of a social networking system. Some online social networks
can be implemented in various settings, including organiza-
tions, e.g., enterprises such as companies or business partner-
ships, academic institutions, or groups within such an orga-
nization. For instance, Chatter®can be used by employee
users in a division of a business organization to share data,
communicate, and collaborate with each other for various
purposes.

In some online social networks, users can access one or
more information feeds, which include information updates
presented as items or entries in the feed. Such a feed item can
include a single information update or a collection of indi-
vidual information updates. A feed item can include various
types of data including character-based data, audio data,
image data and/or video data. An information feed can be
displayed in a graphical user interface (GUI) on a display
device such as the display of a computing device as described
below. The information updates can include various social
network data from various sources and can be stored in an
on-demand database service environment. In some imple-
mentations, the disclosed methods, apparatus, systems, and
computer-readable storage media may be configured or
designed for use in a multi-tenant database environment.

In some implementations, an online social network may
allow a user to follow data objects in the form of records such
as cases, accounts, or opportunities, in addition to following
individual users and groups of users. The “following” of a
record stored in a database, as described in greater detail
below, allows a user to track the progress of that record.
Updates to the record, also referred to herein as changes to the
record, are one type of information update that can occur and
be noted on an information feed such as a record feed or a
news feed of a user subscribed to the record. Examples of
record updates include field changes in the record, updates to
the status of a record, as well as the creation of the record
itself. Some records are publicly accessible, such that any
user can follow the record, while other records are private, for
which appropriate security clearance/permissions are a pre-
requisite to a user following the record.

Information updates can include various types of updates,
which may or may not be linked with a particular record. For
example, information updates can be user-submitted mes-
sages or can otherwise be generated in response to user
actions or in response to events. Examples of messages
include: posts, comments, indications of a user’s personal
preferences such as “likes™ and “dislikes”, updates to a user’s
status, uploaded files, and hyperlinks to social network data or
other network data such as various documents and/or web
pages on the Internet. Posts can include alpha-numeric or
other character-based user inputs such as words, phrases,
statements, questions, emotional expressions, and/or sym-
bols. Comments generally refer to responses to posts, such as
words, phrases, statements, answers, questions, and reaction-
ary emotional expressions and/or symbols. Multimedia data
can be included in, linked with, or attached to a post or
comment. For example, a post can include textual statements
in combination with a JPEG image or animated image. A like
or dislike can be submitted in response to a particular post or
comment. Examples of uploaded files include presentations,
documents, multimedia files, and the like.

US 9,178,753 B2

5

Users can follow a record by subscribing to the record, as
mentioned above. Users can also follow other entities such as
other types of data objects, other users, and groups of users.
Feed tracked updates regarding such entities are one type of
information update that can be received and included in the
user’s news feed. Any number of users can follow a particular
entity and thus view information updates pertaining to that
entity on the users’ respective news feeds. In some social
networks, users may follow each other by establishing con-
nections with each other, sometimes referred to as “friend-
ing” one another. By establishing such a connection, one user
may be able to see information generated by, generated about,
or otherwise associated with another user. For instance, a first
user may be able to see information posted by a second user
to the second user’s personal social network page. One imple-
mentation of such a personal social network page is a user’s
profile page, for example, in the form of a web page repre-
senting the user’s profile. In one example, when the first user
is following the second user, the first user’s news feed can
receive a post from the second user submitted to the second
user’s profile feed, also referred to herein as the user’s “wall,”
which is one example of an information feed displayed on the
user’s profile page.

In some implementations, an information feed may be
specific to a group of users of an online social network. For
instance, a group of users may publish a news feed. Members
of the group may view and post to the group feed in accor-
dance with a permissions configuration for the news feed and
the group. Information updates in a group context can also
include changes to group status information.

In some implementations, when data such as posts or com-
ments input from one or more users are submitted to an
information feed for a particular user, group, object, or other
construct within an online social network, an e-mail notifica-
tion or other type of network communication may be trans-
mitted to all users following the user, group, or object in
addition to the inclusion of the data as a feed item in one or
more feeds, such as a user’s profile feed, a news feed, or a
record feed. In some online social networks, the occurrence of
such a notification is limited to the first instance of a published
input, which may form part of a larger conversation. For
instance, a notification may be transmitted for an initial post,
but not for comments on the post. In some other implemen-
tations, a separate notification is transmitted for each such
information update.

Some implementations of the disclosed systems, appara-
tus, and methods are configured to provide access to online
social network data, for instance, to one or more users outside
of an organization or group of the organization. As mentioned
above, some online social networks are specific to a particular
organization, such as an enterprise. Chatter® can be config-
ured to provide a secure online social network within the
particular organization. Thus, in some implementations,
information sent from internal users such as employees of the
organization is often private, e.g., generally confined to the
organization and viewable only by other employees of the
same organization or group within the organization. Various
levels of security can be implemented to protect the informa-
tion from being accessed by unauthorized users, such as
people not employed by the organization. Thus, for instance,
employees of a company can freely collaborate with each
other by exchanging information and sharing data, while
minimizing the risk of the communications being leaked to
people outside of the company.

For example, an organization, Org A, has implemented an
online social network such as Chatter®. In this example,
Chatter® is initially configured in Org A to have a security

25

30

40

45

55

6

model with permissions such that only an Org A employee
can access and view user profiles, groups, cases, and other
various records of Org A. For instance, employee sales agents
of Org A are granted permission to access and view cases,
leads, opportunities, and other sales-related records. How-
ever, the security model has restrictions to prevent any non-
employee of Org A from accessing such social network data.
Thus, security mechanisms are implemented to block any
current or potential customers of Org A from gaining access
to the sales-related records used by Org A’s sales agents.

In some implementations, the disclosed techniques pro-
vide limited exposure to data of an online social network of an
organization to people outside of the organization, while
maintaining appropriate security restrictions. In certain situ-
ations, people outside of the organization can be recognized
as authorized external users and gain limited access to some
of' the social network data. Some of the disclosed implemen-
tations balance an external user’s limited access and visibility
of such social network data with the maintenance of appro-
priate protection of other organizational data, which should
remain off-limits even to authorized external users. In this
way, people outside of an organization can desirably collabo-
rate with people inside of the organization for a limited pur-
pose, but the outside user is blocked from gaining access to
the organization’s private or otherwise confidential social
network data.

Thus, individual users and groups of an online social net-
work implemented in a particular organization can open a
conversation to include input from users outside of their orga-
nization. In another example, two organizations, Org A and
Org B, are partnered for a joint research and development
project. Employees of the respective organizations desire to
collaborate with each other for the project. However, only Org
A has implemented an online social network such as Chat-
ter®. Applying some of the techniques disclosed herein,
Chatter® can be configured to permit Org B employees to log
into Org A’s implementation of Chatter® and have limited
permission to exchange information with Org A employees
involved in the project, and view project-related information
updates, technical documents, and various records main-
tained in Org A’s databases. A design collaboration space can
be constructed in Org A’s Chatter® to achieve the desired
balance of productive communication and collaboration
between Org A’s and Org B’s employees, while protecting
Org A’s private organizational data from disclosure to Org B.

Some implementations of the disclosed systems, appara-
tus, methods, and computer-readable storage media are con-
figured to provide alerts to users before sharing social net-
work data, for instance, with external users. For example,
users who are members of a group in an online social network
may have concerns about who else in the group can view
posts, comments, and other messages that the users submit to
a group feed. As the membership in a particular group
changes, or the user does not carefully monitor who are the
group members, concerns can arise that confidential, propri-
etary, or other sensitive information may be shared with the
wrong users. Embarrassment and even damage to the group or
organization’s projects and goals can result if the wrong
information is shared with the wrong people. Some imple-
mentations disclosed herein provide mechanisms to manage
such concerns.

In some implementations, a dynamic alert notification is
generated and displayed when certain conditions are satisfied
in association with any of various actions, such as a user
creating a message. The alert notification can be displayed
before the user clicks on a share or send button to send the
message to other users. Various actions can trigger an alert

US 9,178,753 B2

7

notification such as the identification of certain groups or
certain users as intended recipients of user input data. For
instance, as soon as a user clicks on a publisher component to
generate a post to a group feed of a group having external
users, an alert notification can be displayed, which states:
“Caution: external users may see this post.”” In some imple-
mentations, the content of the alert notification can vary and
can be customized and tailored according to the particular
action, the particular data to be shared, and/or the intended
recipient(s). The alert notification can be strategically placed
in proximity to the publisher component or other region when
displayed in a user interface, with the intent that the user sees
the notification and desirably is given enough pause to con-
sider, “Should I be writing this to this audience . . . ”” before
clicking the share or send button.

Using the techniques disclosed herein, alert notifications
can be displayed in a user interface in a timely manner. In
some implementations, the alert notification can be generated
and presented as a user engages with a publisher component
or otherwise causes input data to be entered, but before sub-
mitting the data to a group, user, or other construct within the
online social network. In various examples, an alert notifica-
tion can be prominently displayed responsive to a user engag-
ing, e.g., clicking on a publisher component, hovering a
pointer over a “comment” button, initiating a private mes-
sage, or clicking into any of a variety of designated data entry
fields in a region of a displayed user interface. Such alert
notifications are contextual, because the content, timing, and
placement of the alert can be tailored and presented in the
context of a particular action, such as writing a post in a
particular component or other designated region of a user
interface.

These and other implementations may be embodied in
various types of hardware, software, firmware, and combina-
tions thereof. For example, some techniques disclosed herein
may be implemented, at least in part, by computer-readable
media that include program instructions, state information,
etc., for performing various services and operations described
herein. Examples of program instructions include both
machine code, such as produced by a compiler, and files
containing higher-level code that may be executed by a com-
puting device such as a server or other data processing appa-
ratus using an interpreter. Examples of computer-readable
media include, but are not limited to, magnetic media such as
hard disks, floppy disks, and magnetic tape; optical media
such as CD-ROM disks; magneto-optical media; and hard-
ware devices that are specially configured to store program
instructions, such as read-only memory (“ROM”) devices
and random access memory (“RAM”) devices. These and
other features of the disclosed implementations will be
described in more detail below with reference to the associ-
ated drawings.

The term “multi-tenant database system” can refer to those
systems in which various elements of hardware and software
of a database system may be shared by one or more custom-
ers. For example, a given application server may simulta-
neously process requests for a great number of customers, and
a given database table may store rows of data such as feed
items for a potentially much greater number of customers.
The term “query plan” generally refers to one or more opera-
tions used to access information in a database system.

A “user profile” or “user’s profile” is generally configured
to store and maintain data about a given user of the database
system. The data can include general information, such as
name, title, phone number, a photo, a biographical summary,
and a status, e.g., text describing what the user is currently
doing. As mentioned below, the data can include messages

10

15

20

25

30

40

45

50

55

60

65

8

created by other users. Where there are multiple tenants, a
user is typically associated with a particular tenant. For
example, a user could be a salesperson of a company, which
is a tenant of the database system that provides a database
service.

The term “record” generally refers to a data entity, such as
an instance of a data object created by a user of the database
service, for example, about a particular (actual or potential)
business relationship or project. The data object can have a
data structure defined by the database service (a standard
object) or defined by a user (custom object). For example, a
record can be for a business partner or potential business
partner (e.g., a client, vendor, distributor, etc.) of the user, and
can include information describing an entire company, sub-
sidiaries, or contacts at the company. As another example, a
record can be a project that the user is working on, such as an
opportunity (e.g., a possible sale) with an existing partner, or
a project that the user is trying to get. In one implementation
of'a multi-tenant database system, each record for the tenants
has a unique identifier stored in a common table. A record has
data fields that are defined by the structure of the object (e.g.,
fields of certain data types and purposes). A record can also
have custom fields defined by a user. A field can be another
record or include links thereto, thereby providing a parent-
child relationship between the records.

The terms “information feed” and “feed” are used inter-
changeably herein and generally refer to a combination (e.g.,
a list) of feed items or entries with various types of informa-
tion and data. Such feed items can be stored and maintained in
one or more database tables, e.g., as rows in the table(s), that
can be accessed to retrieve relevant information to be pre-
sented as part of a displayed feed. The term “feed item™ (or
feed element) refers to an item of information, which can be
presented in the feed such as a post submitted by a user. Feed
items of information about a user can be presented in a user’s
profile feed of the database, while feed items of information
about a record can be presented in a record feed in the data-
base, by way of example. A profile feed and a record feed are
examples of different information feeds. A second user fol-
lowing a first user and a record can receive the feed items
associated with the first user and the record for display in the
second user’s news feed, which is another type of information
feed. In some implementations, the feed items from any num-
ber of followed users and records can be combined into a
single information feed of a particular user.

As examples, a feed item can be a message, such as a
user-generated post of text data, and a feed tracked update to
a record or profile, such as a change to a field of the record.
Feed tracked updates are described in greater detail below. A
feed can be a combination of messages and feed tracked
updates. Messages include text created by a user, and may
include other data as well. Examples of messages include
posts, user status updates, and comments. Messages can be
created for auser’s profile or for a record. Posts can be created
by various users, potentially any user, although some restric-
tions can be applied. As an example, posts can be made to a
wall section of a user’s profile page (which can include a
number of recent posts) or a section of a record that includes
multiple posts. The posts can be organized in chronological
order when displayed in a graphical user interface (GUI), for
instance, on the user’s profile page, as part of the user’s profile
feed. In contrast to a post, a user status update changes a status
of'a user and can be made by that user or an administrator. A
record can also have a status, the update of which can be
provided by an owner of the record or other users having
suitable write access permissions to the record. The owner

US 9,178,753 B2

9

can be a single user, multiple users, or a group. In one imple-
mentation, there is only one status for a record.

In some implementations, a comment can be made on any
feed item. In some implementations, comments are organized
as alistexplicitly tied to a particular feed tracked update, post,
or status update. In some implementations, comments may
not be listed in the first layer (in a hierarchal sense) of feed
items, but listed as a second layer branching from a particular
first layer feed item.

A “feed tracked update,” also referred to herein as a “feed
update,” is one type of information update and generally
refers to data representing an event. A feed tracked update can
include text generated by the database system in response to
the event, to be provided as one or more feed items for
possible inclusion in one or more feeds. In one implementa-
tion, the data can initially be stored, and then the database
system can later use the data to create text for describing the
event. Both the data and/or the text can be a feed tracked
update, as used herein. In various implementations, an event
can be an update of a record and/or can be triggered by a
specific action by a user. Which actions trigger an event can be
configurable. Which events have feed tracked updates created
and which feed updates are sent to which users can also be
configurable. Messages and feed updates can be stored as a
field or child object of the record. For example, the feed can be
stored as a child object of the record.

A “group” is generally a collection of users. In some imple-
mentations, the group may be defined as users with a same or
similar attribute, or by membership. In some implementa-
tions, a “group feed”, also referred to herein as a “group news
feed”, includes any feed item about any user in the group. In
some implementations, the group feed includes feed items
that are about the group as a whole. In one implementation,
the feed items for a group are only posts and comments.

An “entity feed” or “record feed” generally refers to a feed
of feed items about a particular record in the database, such as
feed tracked updates about changes to the record and posts
made by users about the record. An entity feed can be com-
posed of any type of feed item. Such a feed can be displayed
on a page such as a web page associated with the record, e.g.,
ahome page of the record. As used herein, a “profile feed” or
“user’s profile feed” is a feed of feed items about a particular
user. In one example, the feed items for a profile feed include
posts and comments that other users make about or send to the
particular user, and status updates made by the particular user.
Such a profile feed can be displayed on a page associated with
the particular user. In another example, feed items in a profile
feed could include posts made by the particular user and feed
tracked updates initiated based on actions of the particular
user.

1. General Overview

Systems, apparatus, and methods are provided for imple-
menting enterprise level social and business information net-
working. Such implementations can provide more efficient
use of a database system. For instance, a user of a database
system may not easily know when important information in
the database has changed, e.g., about a project or client.
Implementations can provide feed tracked updates about such
changes and other events, thereby keeping users informed.

By way of example, a user can update a record, e.g., an
opportunity such as a possible sale of 1000 computers. Once
the record update has been made, a feed tracked update about
the record update can then automatically be provided, e.g., in
afeed, to anyone subscribing to the opportunity or to the user.
Thus, the user does not need to contact a manager regarding

10

15

20

25

30

35

40

45

50

55

60

65

10

the change in the opportunity, since the feed tracked update
about the update is sent via a feed right to the manager’s feed
page or other page.

Next, mechanisms and methods for providing systems
implementing enterprise level social and business informa-
tion networking will be described with reference to several
implementations. First, an overview of an example of a data-
base system is described, and then examples of tracking
events for a record, actions of a user, and messages about a
user or record are described. Various implementations about
the data structure of feeds, customizing feeds, user selection
of records and users to follow, generating feeds, and display-
ing feeds are also described.

II. System Overview

FIG. 1A shows a block diagram of an example of an envi-
ronment 10 in which an on-demand database service can be
used in accordance with some implementations. Environment
10 may include user systems 12, network 14, database system
16, processor system 17, application platform 18, network
interface 20, tenant data storage 22, system data storage 24,
program code 26, and process space 28. In other implemen-
tations, environment 10 may not have all of these components
and/or may have other components instead of, or in addition
to, those listed above.

Environment 10 is an environment in which an on-demand
database service exists. User system 12 may be implemented
as any computing device(s) or other data processing appara-
tus such as amachine or system that is used by a userto access
a database system 16. For example, any of user systems 12
can be a handheld computing device, a mobile phone, a laptop
computer, a work station, and/or a network of such computing
devices. As illustrated in FIG. 1A (and in more detail in FIG.
1B) user systems 12 might interact via a network 14 with an
on-demand database service, which is implemented in the
example of FIG. 1A as database system 16.

An on-demand database service, implemented using sys-
tem 16 by way of example, is a service that is made available
to outside users, who do not need to necessarily be concerned
with building and/or maintaining the database system.
Instead, the database system may be available for their use
when the users need the database system, i.e., on the demand
of the users. Some on-demand database services may store
information from one or more tenants into tables ofa common
database image to form a multi-tenant database system
(MTS). A database image may include one or more database
objects. A relational database management system (RDBMS)
or the equivalent may execute storage and retrieval of infor-
mation against the database object(s). Application platform
18 may be a framework that allows the applications of system
16 to run, such as the hardware and/or software, e.g., the
operating system. In some implementations, application plat-
form 18 enables creation, managing and executing one or
more applications developed by the provider of the on-de-
mand database service, users accessing the on-demand data-
base service via user systems 12, or third party application
developers accessing the on-demand database service via
user systems 12.

The users of user systems 12 may differ in their respective
capacities, and the capacity of a particular user system 12
might be entirely determined by permissions (permission
levels) for the current user. For example, where a salesperson
is using a particular user system 12 to interact with system 16,
that user system has the capacities allotted to that salesperson.
However, while an administrator is using that user system to
interact with system 16, that user system has the capacities
allotted to that administrator. In systems with a hierarchical
role model, users at one permission level may have access to

US 9,178,753 B2

11

applications, data, and database information accessible by a
lower permission level user, but may not have access to cer-
tain applications, database information, and data accessible
by a user at a higher permission level. Thus, different users
will have different capabilities with regard to accessing and
modifying application and database information, depending
on a user’s security or permission level, also called authori-
zation.

Network 14 is any network or combination of networks of
devices that communicate with one another. For example,
network 14 can be any one or any combination of a LAN
(local area network), WAN (wide area network), telephone
network, wireless network, point-to-point network, star net-
work, token ring network, hub network, or other appropriate
configuration. Network 14 can include a TCP/IP (Transfer
Control Protocol and Internet Protocol) network, such as the
global internetwork of networks often referred to as the
“Internet” with a capital “I.” The Internet will be used in many
of'the examples herein. However, it should be understood that
the networks that the present implementations might use are
not so limited, although TCP/IP is a frequently implemented
protocol.

User systems 12 might communicate with system 16 using
TCP/IP and, at a higher network level, use other common
Internet protocols to communicate, such as HI'TP, FTP, AFS,
WAP, etc. In an example where HTTP is used, user system 12
might include an HTTP client commonly referred to as a
“browser” for sending and receiving HTTP signals to and
from an HTTP server at system 16. Such an HTTP server
might be implemented as the sole network interface 20
between system 16 and network 14, but other techniques
might be used as well or instead. In some implementations,
the network interface 20 between system 16 and network 14
includes load sharing functionality, such as round-robin
HTTP request distributors to balance loads and distribute
incoming HTTP requests evenly over a plurality of servers. At
least for users accessing system 16, each of the plurality of
servers has access to the MTS’ data; however, other alterna-
tive configurations may be used instead.

In one implementation, system 16, shown in FIG. 1A,
implements a web-based customer relationship management
(CRM) system. For example, in one implementation, system
16 includes application servers configured to implement and
execute CRM software applications as well as provide related
data, code, forms, web pages and other information to and
from user systems 12 and to store to, and retrieve from, a
database system related data, objects, and Webpage content.
With a multi-tenant system, data for multiple tenants may be
stored in the same physical database object in tenant data
storage 22, however, tenant data typically is arranged in the
storage medium(s) of tenant data storage 22 so that data of
one tenant is kept logically separate from that of other tenants
so that one tenant does not have access to another tenant’s
data, unless such data is expressly shared. In certain imple-
mentations, system 16 implements applications other than, or
in addition to, a CRM application. For example, system 16
may provide tenant access to multiple hosted (standard and
custom) applications, including a CRM application. User (or
third party developer) applications, which may or may not
include CRM, may be supported by the application platform
18, which manages creation, storage of the applications into
one or more database objects and executing of the applica-
tions in a virtual machine in the process space of the system
16.

One arrangement for elements of system 16 is shown in
FIGS. 1A and 1B, including a network interface 20, applica-
tion platform 18, tenant data storage 22 for tenant data 23,

20

30

35

40

45

12

system data storage 24 for system data 25 accessible to sys-
tem 16 and possibly multiple tenants, program code 26 for
implementing various functions of system 16, and a process
space 28 for executing MTS system processes and tenant-
specific processes, such as running applications as part of an
application hosting service. Additional processes that may
execute on system 16 include database indexing processes.

Several elements in the system shown in FIG. 1A include
conventional, well-known elements that are explained only
briefly here. For example, each user system 12 could include
a desktop personal computer, workstation, laptop, PDA, cell
phone, or any wireless access protocol (WAP) enabled device
or any other computing device capable of interfacing directly
or indirectly to the Internet or other network connection. The
term “computing device” is also referred to herein simply as
a “computer”. User system 12 typically runs an HTTP client,
e.g., a browsing program, such as Microsoft’s Internet
Explorer browser, Netscape’s Navigator browser, Opera’s
browser, or a WAP-enabled browser in the case of a cell
phone, PDA or other wireless device, or the like, allowing a
user (e.g., subscriber of the multi-tenant database system) of
user system 12 to access, process and view information, pages
and applications available to it from system 16 over network
14. Each user system 12 also typically includes one or more
user interface devices, such as a keyboard, a mouse, trackball,
touch pad, touch screen, pen or the like, for interacting with a
graphical user interface (GUI) provided by the browser on a
display (e.g., a monitor screen, LCD display, etc.) of the
computing device in conjunction with pages, forms, applica-
tions and other information provided by system 16 or other
systems or servers. For example, the user interface device can
be used to access data and applications hosted by system 16,
and to perform searches on stored data, and otherwise allow a
user to interact with various GUI pages that may be presented
to a user. As discussed above, implementations are suitable
for use with the Internet, although other networks can be used
instead of or in addition to the Internet, such as an intranet, an
extranet, a virtual private network (VPN), a non-TCP/IP
based network, any LAN or WAN or the like.

According to one implementation, each user system 12 and
all of its components are operator configurable using appli-
cations, such as a browser, including computer code run using
a central processing unit such as an Intel Pentium® processor
or the like. Similarly, system 16 (and additional instances of
an MTS, where more than one is present) and all of its com-
ponents might be operator configurable using application(s)
including computer code to run using processor system 17,
which may be implemented to include a central processing
unit, which may include an Intel Pentium® processor or the
like, and/or multiple processor units. Non-transitory com-
puter-readable media can have instructions stored thereon/in,
that can be executed by or used to program a computing
device to perform any of the methods of the implementations
described herein. Computer program code 26 implementing
instructions for operating and configuring system 16 to inter-
communicate and to process web pages, applications and
other data and media content as described herein is preferably
downloadable and stored on a hard disk, but the entire pro-
gram code, or portions thereof, may also be stored in any
other volatile or non-volatile memory medium or device as is
well known, such as a ROM or RAM, or provided on any
media capable of storing program code, such as any type of
rotating media including floppy disks, optical discs, digital
versatile disk (DVD), compact disk (CD), microdrive, and
magneto-optical disks, and magnetic or optical cards, nano-
systems (including molecular memory ICs), or any other type
of computer-readable medium or device suitable for storing

US 9,178,753 B2

13

instructions and/or data. Additionally, the entire program
code, or portions thereof, may be transmitted and downloaded
from a software source over a transmission medium, e.g., over
the Internet, or from another server, as is well known, or
transmitted over any other conventional network connection
as is well known (e.g., extranet, VPN, LAN, etc.) using any
communication medium and protocols (e.g., TCP/IP, HTTP,
HTTPS, Ethernet, etc.) as are well known. It will also be
appreciated that computer code for the disclosed implemen-
tations can be realized in any programming language that can
be executed on a client system and/or server or server system
such as, for example, C, C++, HIML, any other markup
language, Java™, JavaScript, ActiveX, any other scripting
language, such as VBScript, and many other programming
languages as are well known may be used. (Java™ is a trade-
mark of Sun Microsystems, Inc.).

According to some implementations, each system 16 is
configured to provide web pages, forms, applications, data
and media content to user (client) systems 12 to support the
access by user systems 12 as tenants of system 16. As such,
system 16 provides security mechanisms to keep each ten-
ant’s data separate unless the data is shared. If more than one
MTS is used, they may be located in close proximity to one
another (e.g., in a server farm located in a single building or
campus), or they may be distributed at locations remote from
one another (e.g., one or more servers located in city A and
one or more servers located in city B). As used herein, each
MTS could include one or more logically and/or physically
connected servers distributed locally or across one or more
geographic locations. Additionally, the term “server” is
meant to refer to a computing device or system, including
processing hardware and process space(s), an associated stor-
age medium such as a memory device or database, and, in
some instances, a database application (e.g., OODBMS or
RDBMS) as is well known in the art. It should also be under-
stood that “server system” and “server” are often used inter-
changeably herein. Similarly, the database objects described
herein can be implemented as single databases, a distributed
database, a collection of distributed databases, a database
with redundant online or offline backups or other redundan-
cies, etc., and might include a distributed database or storage
network and associated processing intelligence.

FIG. 1B shows a block diagram of an example of some
implementations of elements of FIG. 1A and various possible
interconnections between these elements. That is, FIG. 1B
also illustrates environment 10. However, in FIG. 1B ele-
ments of system 16 and various interconnections in some
implementations are further illustrated. FIG. 1B shows that
user system 12 may include processor system 12A, memory
system 12B, input system 12C, and output system 12D. FIG.
1B shows network 14 and system 16. FIG. 1B also shows that
system 16 may include tenant data storage 22, tenant data 23,
system data storage 24, system data 25, User Interface (UI)
30, Application Program Interface (API) 32, PL/SOQL 34,
save routines 36, application setup mechanism 38, applica-
tions servers 1001-100N, system process space 102, tenant
process spaces 104, tenant management process space 110,
tenant storage space 112, user storage 114, and application
metadata 116. In other implementations, environment 10 may
not have the same elements as those listed above and/or may
have other elements instead of, or in addition to, those listed
above.

User system 12, network 14, system 16, tenant data storage
22, and system data storage 24 were discussed above in FIG.
1A. Regarding user system 12, processor system 12A may be
any combination of one or more processors. Memory system
12B may be any combination of one or more memory devices,

5

10

15

20

25

30

35

40

45

50

55

60

65

14

short term, and/or long term memory. Input system 12C may
be any combination of input devices, such as one or more
keyboards, mice, trackballs, scanners, cameras, and/or inter-
faces to networks. Output system 12D may be any combina-
tion of output devices, such as one or more monitors, printers,
and/or interfaces to networks. As shown by FIG. 1B, system
16 may include a network interface 20 (of FIG. 1A) imple-
mented as a set of HTTP application servers 100, an applica-
tion platform 18, tenant data storage 22, and system data
storage 24. Also shown is system process space 102, includ-
ing individual tenant process spaces 104 and a tenant man-
agement process space 110. Each application server 100 may
be configured to communicate with tenant data storage 22 and
the tenant data 23 therein, and system data storage 24 and the
system data 25 therein to serve requests of user systems 12.
The tenant data 23 might be divided into individual tenant
storage spaces 112, which can be either a physical arrange-
ment and/or a logical arrangement of data. Within each tenant
storage space 112, user storage 114 and application metadata
116 might be similarly allocated for each user. For example,
a copy of a user’s most recently used (MRU) items might be
stored to user storage 114. Similarly, a copy of MRU items for
an entire organization thatis a tenant might be stored to tenant
storage space 112. A UI 30 provides a user interface and an
API 32 provides an application programmer interface to sys-
tem 16 resident processes to users and/or developers at user
systems 12. The tenant data and the system data may be stored
in various databases, such as one or more Oracle databases.

Application platform 18 includes an application setup
mechanism 38 that supports application developers’ creation
and management of applications, which may be saved as
metadata into tenant data storage 22 by save routines 36 for
execution by subscribers as one or more tenant process spaces
104 managed by tenant management process 110 for
example. Invocations to such applications may be coded
using PL/SOQL 34 that provides a programming language
style interface extension to API 32. A detailed description of
some PL/SOQL language implementations is discussed in
commonly assigned U.S. Pat. No. 7,730,478, titled
METHOD AND SYSTEM FOR ALLOWING ACCESS TO
DEVELOPED APPLICATIONS VIA A MULTI-TENANT
ON-DEMAND DATABASE SERVICE, by Craig Weissman,
issued on Jun. 1, 2010, and hereby incorporated by reference
in its entirety and for all purposes. Invocations to applications
may be detected by one or more system processes, which
manage retrieving application metadata 116 for the sub-
scriber making the invocation and executing the metadata as
an application in a virtual machine.

Each application server 100 may be communicably
coupled to database systems, e.g., having access to system
data 25 and tenant data 23, via a different network connection.
For example, one application server 1001 might be coupled
via the network 14 (e.g., the Internet), another application
server 100N-1 might be coupled via a direct network link, and
another application server 100N might be coupled by yet a
different network connection. Transfer Control Protocol and
Internet Protocol (TCP/IP) are typical protocols for commu-
nicating between application servers 100 and the database
system. However, it will be apparent to one skilled in the art
that other transport protocols may be used to optimize the
system depending on the network interconnect used.

In certain implementations, each application server 100 is
configured to handle requests for any user associated with any
organization that is a tenant. Because it is desirable to be able
to add and remove application servers from the server pool at
any time for any reason, there is preferably no server affinity
for a user and/or organization to a specific application server

US 9,178,753 B2

15

100. In one implementation, therefore, an interface system
implementing a load balancing function (e.g., an F5 Big-IP
load balancer) is communicably coupled between the appli-
cation servers 100 and the user systems 12 to distribute
requests to the application servers 100. In one implementa-
tion, the load balancer uses a least connections algorithm to
route user requests to the application servers 100. Other
examples of load balancing algorithms, such as round robin
and observed response time, also can be used. For example, in
certain implementations, three consecutive requests from the
same user could hit three different application servers 100,
and three requests from different users could hit the same
application server 100. In this manner, by way of example,
system 16 is multi-tenant, wherein system 16 handles storage
of, and access to, different objects, data and applications
across disparate users and organizations.

As an example of storage, one tenant might be a company
that employs a sales force where each salesperson uses sys-
tem 16 to manage their sales process. Thus, a user might
maintain contact data, leads data, customer follow-up data,
performance data, goals and progress data, etc., all applicable
to that user’s personal sales process (e.g., in tenant data stor-
age 22). In an example of a MTS arrangement, since all of the
data and the applications to access, view, modify, report,
transmit, calculate, etc., can be maintained and accessed by a
user system having nothing more than network access, the
user can manage his or her sales efforts and cycles from any
of many different user systems. For example, if a salesperson
is visiting a customer and the customer has Internet access in
their lobby, the salesperson can obtain critical updates as to
that customer while waiting for the customer to arrive in the
lobby.

While each user’s data might be separate from other users’
data regardless of the employers of each user, some data
might be organization-wide data shared or accessible by a
plurality of users or all of the users for a given organization
that is a tenant. Thus, there might be some data structures
managed by system 16 that are allocated at the tenant level
while other data structures might be managed at the user level.
Because an MTS might support multiple tenants including
possible competitors, the MTS should have security protocols
that keep data, applications, and application use separate.
Also, because many tenants may opt for access to an MTS
rather than maintain their own system, redundancy, up-time,
and backup are additional functions that may be implemented
in the MTS. In addition to user-specific data and tenant-
specific data, system 16 might also maintain system level data
usable by multiple tenants or other data. Such system level
data might include industry reports, news, postings, and the
like that are sharable among tenants.

In certain implementations, user systems 12 (which may be
client systems) communicate with application servers 100 to
request and update system-level and tenant-level data from
system 16 that may involve sending one or more queries to
tenant data storage 22 and/or system data storage 24. System
16 (e.g., an application server 100 in system 16) automati-
cally generates one or more SQL statements (e.g., one or
more SQL queries) that are designed to access the desired
information. System data storage 24 may generate query
plans to access the requested data from the database.

Each database can generally be viewed as a collection of
objects, such as a set of logical tables, containing data fitted
into predefined categories. A “table” is one representation of
a data object, and may be used herein to simplify the concep-
tual description of objects and custom objects according to
some implementations. It should be understood that “table”
and “object” may be used interchangeably herein. Each table

10

15

20

25

30

35

40

45

50

55

60

65

16

generally contains one or more data categories logically
arranged as columns or fields in a viewable schema. Each row
or record of a table contains an instance of data for each
category defined by the fields. For example, a CRM database
may include a table that describes a customer with fields for
basic contact information such as name, address, phone num-
ber, fax number, etc. Another table might describe a purchase
order, including fields for information such as customer,
product, sale price, date, etc. In some multi-tenant database
systems, standard entity tables might be provided for use by
all tenants. For CRM database applications, such standard
entities might include tables for case, account, contact, lead,
and opportunity data objects, each containing pre-defined
fields. It should be understood that the word “entity” may also
be used interchangeably herein with “object” and “table”.

In some multi-tenant database systems, tenants may be
allowed to create and store custom objects, or they may be
allowed to customize standard entities or objects, for example
by creating custom fields for standard objects, including cus-
tom index fields. Commonly assigned U.S. Pat. No. 7,779,
039, titled CUSTOM ENTITIES AND FIELDS IN A
MULTI-TENANT DATABASE SYSTEM, by Weissman et
al., issued on Aug. 17, 2010, and hereby incorporated by
reference in its entirety and for all purposes, teaches systems
and methods for creating custom objects as well as custom-
izing standard objects in a multi-tenant database system. In
certain implementations, for example, all custom entity data
rows are stored in a single multi-tenant physical table, which
may contain multiple logical tables per organization. It is
transparent to customers that their multiple “tables” are in fact
stored in one large table or that their data may be stored in the
same table as the data of other customers.

FIG. 2A shows a system diagram illustrating an example of
architectural components of an on-demand database service
environment 200 according to some implementations. A cli-
ent machine located in the cloud 204, generally referring to
one or more networks in combination, as described herein,
may communicate with the on-demand database service envi-
ronment via one or more edge routers 208 and 212. A client
machine can be any of the examples of user systems 12
described above. The edge routers may communicate with
one or more core switches 220 and 224 via firewall 216. The
core switches may communicate with a load balancer 228,
which may distribute server load over different pods, such as
the pods 240 and 244. The pods 240 and 244, which may each
include one or more servers and/or other computing
resources, may perform data processing and other operations
used to provide on-demand services. Communication with
the pods may be conducted via pod switches 232 and 236.
Components of the on-demand database service environment
may communicate with a database storage 256 via a database
firewall 248 and a database switch 252.

As shown in FIGS. 2A and 2B, accessing an on-demand
database service environment may involve communications
transmitted among a variety of different hardware and/or
software components. Further, the on-demand database ser-
vice environment 200 is a simplified representation of an
actual on-demand database service environment. For
example, while only one or two devices of each type are
shown in FIGS. 2A and 2B, some implementations of an
on-demand database service environment may include any-
where from one to many devices of each type. Also, the
on-demand database service environment need not include
each device shown in FIGS. 2A and 2B, or may include
additional devices not shown in FIGS. 2A and 2B.

Moreover, one or more of the devices in the on-demand
database service environment 200 may be implemented on

US 9,178,753 B2

17

the same physical device or on different hardware. Some
devices may be implemented using hardware or a combina-
tion of hardware and software. Thus, terms such as “data
processing apparatus,” “machine,” “server” and “device” as
used herein are not limited to a single hardware device, but
rather include any hardware and software configured to pro-
vide the described functionality.

The cloud 204 is intended to refer to a data network or
plurality of data networks, often including the Internet. Client
machines located in the cloud 204 may communicate with the
on-demand database service environment to access services
provided by the on-demand database service environment.
For example, client machines may access the on-demand
database service environment to retrieve, store, edit, and/or
process information.

In some implementations, the edge routers 208 and 212
route packets between the cloud 204 and other components of
the on-demand database service environment 200. The edge
routers 208 and 212 may employ the Border Gateway Proto-
col (BGP). The BGP is the core routing protocol of the Inter-
net. The edge routers 208 and 212 may maintain a table of IP
networks or ‘prefixes’, which designate network reachability
among autonomous systems on the Internet.

In one or more implementations, the firewall 216 may
protect the inner components of the on-demand database
service environment 200 from Internet traffic. The firewall
216 may block, permit, or deny access to the inner compo-
nents of the on-demand database service environment 200
based upon a set of rules and other criteria. The firewall 216
may act as one or more of a packet filter, an application
gateway, a stateful filter, a proxy server, or any other type of
firewall.

In some implementations, the core switches 220 and 224
are high-capacity switches that transfer packets within the
on-demand database service environment 200. The core
switches 220 and 224 may be configured as network bridges
that quickly route data between different components within
the on-demand database service environment. In some imple-
mentations, the use of two or more core switches 220 and 224
may provide redundancy and/or reduced latency.

In some implementations, the pods 240 and 244 may per-
form the core data processing and service functions provided
by the on-demand database service environment. Each pod
may include various types of hardware and/or software com-
puting resources. An example of the pod architecture is dis-
cussed in greater detail with reference to FIG. 2B.

In some implementations, communication between the
pods 240 and 244 may be conducted via the pod switches 232
and 236. The pod switches 232 and 236 may facilitate com-
munication between the pods 240 and 244 and client
machines located in the cloud 204, for example via core
switches 220 and 224. Also, the pod switches 232 and 236
may facilitate communication between the pods 240 and 244
and the database storage 256.

In some implementations, the load balancer 228 may dis-
tribute workload between the pods 240 and 244. Balancing
the on-demand service requests between the pods may assist
in improving the use of resources, increasing throughput,
reducing response times, and/or reducing overhead. The load
balancer 228 may include multilayer switches to analyze and
forward traffic.

In some implementations, access to the database storage
256 may be guarded by a database firewall 248. The database
firewall 248 may act as a computer application firewall oper-
ating at the database application layer of a protocol stack. The
database firewall 248 may protect the database storage 256

29 <

15

20

40

45

55

18

from application attacks such as structure query language
(SQL) injection, database rootkits, and unauthorized infor-
mation disclosure.

In some implementations, the database firewall 248 may
include a host using one or more forms of reverse proxy
services to proxy traffic before passing it to a gateway router.
The database firewall 248 may inspect the contents of data-
base traffic and block certain content or database requests.
The database firewall 248 may work on the SQL application
level atop the TCP/IP stack, managing applications’ connec-
tion to the database or SQL management interfaces as well as
intercepting and enforcing packets traveling to or from a
database network or application interface.

In some implementations, communication with the data-
base storage 256 may be conducted via the database switch
252. The multi-tenant database storage 256 may include more
than one hardware and/or software components for handling
database queries. Accordingly, the database switch 252 may
direct database queries transmitted by other components of
the on-demand database service environment (e.g., the pods
240 and 244) to the correct components within the database
storage 256.

In some implementations, the database storage 256 is an
on-demand database system shared by many different orga-
nizations. The on-demand database system may employ a
multi-tenant approach, a virtualized approach, or any other
type of database approach. An on-demand database system is
discussed in greater detail with reference to FIGS. 1A and 1B.

FIG. 2B shows a system diagram further illustrating an
example of architectural components of an on-demand data-
base service environment according to some implementa-
tions. The pod 244 may be used to render services to a user of
the on-demand database service environment 200. In some
implementations, each pod may include a variety of servers
and/or other systems. The pod 244 includes one or more
content batch servers 264, content search servers 268, query
servers 282, file force servers 286, access control system
(ACS) servers 280, batch servers 284, and app servers 288.
Also, the pod 244 includes database instances 290, quick file
systems (QFS) 292, and indexers 294. In one or more imple-
mentations, some or all communication between the servers
in the pod 244 may be transmitted via the switch 236.

In some implementations, the app servers 288 may include
a hardware and/or software framework dedicated to the
execution of procedures (e.g., programs, routines, scripts) for
supporting the construction of applications provided by the
on-demand database service environment 200 via the pod
244. In some implementations, the hardware and/or software
framework of an app server 288 is configured to execute
operations of the services described herein, including perfor-
mance of the blocks of methods described with reference to
FIGS.15-27. In alternative implementations, two or more app
servers 288 may be included and cooperate to perform such
methods, or one or more other servers described herein can be
configured to perform the disclosed methods.

The content batch servers 264 may handle requests internal
to the pod. These requests may be long-running and/or not
tied to a particular customer. For example, the content batch
servers 264 may handle requests related to log mining,
cleanup work, and maintenance tasks.

The content search servers 268 may provide query and
indexer functions. For example, the functions provided by the
content search servers 268 may allow users to search through
content stored in the on-demand database service environ-
ment.

The file force servers 286 may manage requests for infor-
mation stored in the Fileforce storage 298. The Fileforce

US 9,178,753 B2

19

storage 298 may store information such as documents,
images, and basic large objects (BLOBs). By managing
requests for information using the file force servers 286, the
image footprint on the database may be reduced.

The query servers 282 may be used to retrieve information
from one or more file systems. For example, the query system
282 may receive requests for information from the app serv-
ers 288 and then transmit information queries to the NFS 296
located outside the pod.

The pod 244 may share a database instance 290 configured
as a multi-tenant environment in which different organiza-
tions share access to the same database. Additionally, services
rendered by the pod 244 may call upon various hardware
and/or software resources. In some implementations, the ACS
servers 280 may control access to data, hardware resources,
or software resources.

In some implementations, the batch servers 284 may pro-
cess batch jobs, which are used to run tasks at specified times.
Thus, the batch servers 284 may transmit instructions to other
servers, such as the app servers 288, to trigger the batch jobs.

In some implementations, the QFS 292 may be an open
source file system available from Sun Microsystems® of
Santa Clara, Calif. The QFS may serve as a rapid-access file
system for storing and accessing information available within
the pod 244. The QFS 292 may support some volume man-
agement capabilities, allowing many disks to be grouped
together into a file system. File system metadata can be kept
on a separate set of disks, which may be useful for streaming
applications where long disk seeks cannot be tolerated. Thus,
the QFS system may communicate with one or more content
search servers 268 and/or indexers 294 to identify, retrieve,
move, and/or update data stored in the network file systems
296 and/or other storage systems.

In some implementations, one or more query servers 282
may communicate with the NFS 296 to retrieve and/or update
information stored outside of the pod 244. The NFS 296 may
allow servers located in the pod 244 to access information to
access files over a network in a manner similar to how local
storage is accessed.

In some implementations, queries from the query servers
222 may be transmitted to the NFS 296 via the load balancer
228, which may distribute resource requests over various
resources available in the on-demand database service envi-
ronment. The NFS 296 may also communicate with the QFS
292 to update the information stored on the NFS 296 and/or to
provide information to the QFS 292 foruse by servers located
within the pod 244.

In some implementations, the pod may include one or more
database instances 290. The database instance 290 may trans-
mit information to the QFS 292. When information is trans-
mitted to the QFS, it may be available for use by servers
within the pod 244 without using an additional database call.

In some implementations, database information may be
transmitted to the indexer 294. Indexer 294 may provide an
index of information available in the database 290 and/or
QFS 292. The index information may be provided to file force
servers 286 and/or the QFS 292.

III. Tracking Updates to a Record Stored in a Database

As multiple users might be able to change the data of a
record, it can be useful for certain users to be notified when a
record is updated. Also, even if a user does not have authority
to change a record, the user still might want to know when
there is an update to the record. For example, a vendor may
negotiate a new price with a salesperson of company X, where
the salesperson is a user associated with tenant Y. As part of
creating a new invoice or for accounting purposes, the sales-
person can change the price saved in the database. It may be

10

15

20

25

30

35

40

45

50

55

60

20

important for co-workers to know that the price has changed.
The salesperson could send an e-mail to certain people, but
this is onerous and the salesperson might not e-mail all of the
people who need to know or want to know. Accordingly, some
implementations of the disclosed techniques can inform oth-
ers (e.g., co-workers) who want to know about an update to a
record automatically.

FIG. 3 shows a flowchart of an example of a method 300 for
tracking updates to a record stored in a database system,
performed in accordance with some implementations.
Method 300 (and other methods described herein) may be
implemented at least partially with multi-tenant database sys-
tem 16, e.g., by one or more processors configured to receive
orretrieve information, process the information, store results,
and transmit the results. In other implementations, method
300 may be implemented at least partially with a single tenant
database system. In various implementations, blocks may be
omitted, combined, or split into additional blocks for method
300, as well as for other methods described herein.

In block 310, the database system receives a request to
update a first record. In one implementation, the request is
received from a first user. For example, a user may be access-
ing a page associated with the first record, and may change a
displayed field and hit save. In another implementation, the
database system can automatically create the request. For
instance, the database system can create the request in
response to another event, e.g., a request to change a field
could be sent periodically at a particular date and/or time of
day, or a change to another field or object. The database
system can obtain a new value based on other fields of a
record and/or based on parameters in the system.

The request for the update of a field of a record is an
example of an event associated with the first record for which
a feed tracked update may be created. In other implementa-
tions, the database system can identify other events besides
updates to fields of a record. For example, an event can be a
submission of approval to change a field. Such an event can
also have an associated field (e.g., a field showing a status of
whether a change has been submitted). Other examples of
events can include creation of a record, deletion of a record,
converting a record from one type to another (e.g., converting
a lead to an opportunity), closing a record (e.g., a case type
record), and potentially any other state change of a record—
any of which could include a field change associated with the
state change. Any of these events update the record whether
by changing a field of the record, a state of the record, or some
other characteristic or property of the record. In one imple-
mentation, a list of supported events for creating a feed
tracked update can be maintained within the database system,
e.g., at a server or in a database.

In block 320, the database system writes new data to the
first record. In one implementation, the new data may include
a new value that replaces old data. For example, a field is
updated with a new value. In another implementation, the new
data can be a value for a field that did not contain data before.
In yet another implementation, the new data could be a flag,
e.g., for a status of the record, which can be stored as a field of
the record.

In some implementations, a “field” can also include
records, which are child objects of the first record in a parent-
child hierarchy. A field can alternatively include a pointer to a
child record. A child object itself can include further fields.
Thus, if a field of a child object is updated with a new value,
the parent record also can be considered to have a field
changed. In one example, a field could be a list of related child
objects, also called a related list.

US 9,178,753 B2

21

In block 330, a feed tracked update is generated about the
update to the record. In one implementation, the feed tracked
update is created in parts for assembling later into a display
version. For example, event entries can be created and tracked
in a first table, and changed field entries can be tracked in
another table that is cross-referenced with the first table. More
specifics of such implementations are provided later, e.g.,
with respect to FIG. 9A. In another implementation, the feed
tracked update is automatically generated by the database
system. The feed tracked update can convey in words that the
first record has been updated and provide details about what
was updated in the record and who performed the update. In
some implementations, a feed tracked update is generated for
only certain types of event and/or updates associated with the
first record.

In one implementation, a tenant (e.g., through an adminis-
trator) can configure the database system to create (enable)
feed tracked updates only for certain types of records. For
example, an administrator can specify that records of desig-
nated types such as accounts and opportunities are enabled.
When an update (or other event) is received for the enabled
record type, then a feed tracked update would be generated. In
another implementation, a tenant can also specify the fields of
a record whose changes are to be tracked, and for which feed
tracked updates are created. In one aspect, a maximum num-
ber of fields can be specified for tracking, and may include
custom fields. In one implementation, the type of change can
also be specified, for example, that the value change of a field
is to be larger than a threshold (e.g., an absolute amount or a
percentage change). In yet another implementation, a tenant
can specify which events are to cause a generation of a feed
tracked update. Also, in one implementation, individual users
can specify configurations specific to them, which can create
custom feeds as described in more detail below.

In one implementation, changes to fields of a child object
are not tracked to create feed tracked updates for the parent
record. In another implementation, the changes to fields of a
child object can be tracked to create feed tracked updates for
the parent record. For example, a child object of the parent
type can be specified for tracking, and certain fields of the
child object can be specified for tracking. As another
example, ifthe child object is of a type specified for tracking,
then a tracked change for the child object is propagated to
parent records of the child object.

Inblock 340, the feed tracked update is added to a feed for
the first record. In one implementation, adding the feed
tracked update to a feed can include adding events to a table
(which may be specific to a record or be for all or a group of
objects), where a display version of a feed tracked update can
be generated dynamically and presented in a GUI as a feed
item when a user requests a feed for the firstrecord. In another
implementation, a display version of a feed tracked update
can be added when a record feed is stored and maintained for
a record. As mentioned above, a feed may be maintained for
only certain records. In one implementation, the feed of a
record can be stored in the database associated with the
record. For example, the feed can be stored as a field (e.g., as
achild object) of the record. Such a field can store a pointer to
the text to be displayed for the feed tracked update.

In some implementations, only the current feed tracked
update (or other current feed item) may be kept or temporarily
stored, e.g., in some temporary memory structure. For
example, a feed tracked update for only a most recent change
to any particular field is kept. In other implementations, many
previous feed tracked updates may be kept in the feed. A time
and/or date for each feed tracked update can be tracked.

10

15

20

25

30

35

40

45

50

55

60

65

22

Herein, a feed of a record is also referred to as an entity feed,
as a record is an instance of a particular entity object of the
database.

In block 350, followers of the first record can be identified.
A follower is a user following the first record, such as a
subscriber to the feed of the first record. In one implementa-
tion, when a user requests a feed of a particular record, such
an identification of block 350 can be omitted. In another
implementation where a record feed is pushed to a user (e.g.,
as part of a news feed), then the user can be identified as a
follower of the first record. Accordingly, this block can
include the identification of records and other objects being
followed by a particular user.

In one implementation, the database system can store a list
of'the followers for a particular record. In various implemen-
tations, the list can be stored with the first record or associated
with the record using an identifier (e.g., a pointer) to retrieve
the list. For example, the list can be stored in a field of the first
record. In another implementation, a list of the records that a
user is following is used. In one implementation, the database
system can have a routine that runs for each user, where the
routine polls the records in the list to determine if a new feed
tracked update has been added to a feed of the record. In
another implementation, the routine for the user can be run-
ning at least partially on a user device, which contacts the
database to perform the polling.

In block 360, in one implementation, the feed tracked
update can be stored in a table, as described in greater detail
below. When the user opens a feed, an appropriate query is
sent to one or more tables to retrieve updates to records, also
described in greater detail below. In some implementations,
the feed shows feed tracked updates in reverse chronological
order. In one implementation, the feed tracked update is
pushed to the feed of a user, e.g., by a routine that determines
the followers for the record from a list associated with the
record. In another implementation, the feed tracked update is
pulled to a feed, e.g., by auser device. This pulling may occur
when a user requests the feed, as occurs in block 370. Thus,
these actions may occur in a different order. The creation of
the feed for a pull may be a dynamic creation that identifies
records being followed by the requesting user, generates the
display version of relevant feed tracked updates from stored
information (e.g., event and field change), and adds the feed
tracked updates into the feed. A feed of feed tracked updates
of records and other objects that a user is following is also
generally referred to herein as a news feed, which can be a
subset of a larger information feed in which other types of
information updates appear, such as posts.

In yet another implementation, the feed tracked update
could be sent as an e-mail to the follower, instead of in a feed.
In one implementation, e-mail alerts for events can enable
people to be e-mailed when certain events occur. In another
implementation, e-mails can be sent when there are posts on
a user profile and posts on entities to which the user sub-
scribes. In one implementation, a user can turn on/off email
alerts for all or some events. In an implementation, a user can
specify what kind of feed tracked updates to receive about a
record that the user is following. For example, a user can
choose to only receive feed tracked updates about certain
fields of a record that the user is following, and potentially
about what kind of update was performed (e.g., a new value
input into a specified field, or the creation of a new field).

Inblock 370, a follower can access his/her news feed to see
the feed tracked update. In one implementation, the user has
just one news feed for all of the records that the user is
following. In one aspect, a user can access his/her own feed by
selecting a particular tab or other object on a page of an

US 9,178,753 B2

23

interface to the database system. Once selected the feed can
be provided as a list, e.g., with an identifier (e.g., a time) or
including some or all of the text of the feed tracked update. In
another implementation, the user can specify how the feed
tracked updates are to be displayed and/or sent to the user. For
example, a user can specify a font for the text, a location of
where the feed can be selected and displayed, amount of text
to be displayed, and other text or symbols to be displayed
(e.g., importance flags).

FIG. 4 shows a block diagram of an example of compo-
nents of a database system configuration 400 performing a
method for tracking an update to a record according to some
implementations. Database system configuration 400 can
perform implementations of method 300, as well as imple-
mentations of other methods described herein.

A first user 405 sends a request 1 to update record 425 in
database system 416. Although an update request is
described, other events that are being tracked are equally
applicable. In various implementations, the request 1 can be
sent via a user interface (e.g., 30 of FIG. 1B) or an application
program interface (e.g., AP132). An I/O port 420 can accom-
modate the signals of request 1 via any input interface, and
send the signals to one or more processors 417. The processor
417 can analyze the request and determine operations to be
performed. Herein, any reference to a processor 417 can refer
to a specific processor or any set of processors in database
system 416, which canbe collectively referred to as processor
417.

Processor 417 can determine an identifier for record 425,
and send commands with the new data 2 of the request to
record database 412 to update record 425. In one implemen-
tation, record database 412 is where tenant storage space 112
of FIG. 1B is located. The request 1 and new data commands
2 can be encapsulated in a single write transaction sent to
record database 412. In one implementation, multiple
changes to records in the database can be made in a single
write transaction.

Processor 417 can also analyze request 1 to determine
whether a feed tracked update is to be created, which at this
point may include determining whether the event (e.g., a
change to a particular field) is to be tracked. This determina-
tion can be based on an interaction (i.e., an exchange of data)
with record database 412 and/or other databases, or based on
information stored locally (e.g., in cache or RAM) at proces-
sor 417. In one implementation, a list of record types that are
being tracked can be stored. The list may be different for each
tenant, e.g., as each tenant may configure the database system
to its own specifications. Thus, if the record 425 is of a type
not being tracked, then the determination of whether to create
a feed tracked update can stop there.

The same list or a second list (which can be stored in a same
location or a different location) can also include the fields
and/or events that are tracked for the record types in the first
list. This list can be searched to determine if the event is being
tracked. A list may also contain information having the granu-
larity of listing specific records that are to be tracked (e.g., if
a tenant can specify the particular records to be tracked, as
opposed to just type).

As an example, processor 417 may obtain an identifier
associated with record 425 (e.g., obtained from request 1 or
database 412), potentially along with a tenant identifier, and
cross-reference the identifier with a list of records for which
feed tracked updates are to be created. Specifically, the record
identifier can be used to determine the record type and a list of
tracked types can be searched for a match. The specific record
may also be checked if such individual record tracking was
enabled. The name of the field to be changed can also be used

15

20

25

40

45

50

24

to search a list of tracking-enabled fields. Other criteria
besides field and events can be used to determine whether a
feed tracked update is created, e.g., type of change in the field.
If a feed tracked update is to be generated, processor 417 can
then generate the feed tracked update.

In some implementations, a feed tracked update is created
dynamically when a feed (e.g., the entity feed of record 425)
is requested. Thus, in one implementation, a feed tracked
update can be created when a user requests the entity feed for
record 425. In this implementation, the feed tracked update
may be created (e.g., assembled), including re-created, each
time the entity feed is to be displayed to any user. In one
implementation, one or more event history tables can keep
track of previous events so that the feed tracked update can be
re-created.

In another implementation, a feed tracked update can be
created at the time the event occurs, and the feed tracked
update can be added to a list of feed items. The list of feed
items may be specific to record 425, or may be an aggregate
of feed items including feed items for many records. Such an
aggregate list can include a record identifier so that the feed
items for the entity feed of record 425 can be easily retrieved.
For example, after the feed tracked update has been gener-
ated, processor 417 can add the new feed tracked update 3 to
a feed of record 425. As mentioned above, in one implemen-
tation, the feed can be stored in a field (e.g., as a child object)
of record 425. In another implementation, the feed can be
stored in another location or in another database, but with a
link (e.g., a connecting identifier) to record 425. The feed can
be organized in various ways, e.g., as a linked list, an array, or
other data structure.

A second user 430 can access the new feed tracked update
3 in various ways. In one implementation, second user 430
can send a request 4 for the record feed. For example, second
user 430 can access a home page (detail page) of the record
425 (e.g., with a query or by browsing), and the feed can be
obtained through a tab, button, or other activation object on
the page. The feed can be displayed on the screen or down-
loaded.

In another implementation, processor 417 can add the new
feed tracked update 5 to a feed (e.g., anews feed) of a user that
is following record 425. In one implementation, processor
417 can determine each of the followers of record 425 by
accessing a list of the users that have been registered as
followers. This determination can be done for each new event
(e.g., update 1). In another implementation, processor 417
can poll (e.g., with a query) the records that second user 430
is following to determine when new feed tracked updates (or
other feed items) are available. Processor 417 can use a fol-
lower profile 435 of second user 430 that can contain a list of
the records that the second user 430 is following. Such a list
can be contained in other parts of the database as well. Second
user 430 can then send a request 6 to his/her profile 435 to
obtain a feed, which contains the new feed tracked update.
The user’s profile 435 can be stored in a profile database 414,
which can be the same or different than database 412.

In some implementations, a user can define a news feed to
include new feed tracked updates from various records, which
may be limited to a maximum number. In one implementa-
tion, each user has one news feed. In another implementation,
the follower profile 435 can include the specifications of each
of the records to be followed (with the criteria for what feed
tracked updates are to be provided and how they are dis-
played), as well as the feed.

Some implementations can provide various types of record
(entity) feeds. Entity Feeds can exist for record types like
account, opportunity, case, and contact. An entity feed cantell

US 9,178,753 B2

25

a user about the actions that people have taken on that par-
ticular record or on one its related records. The entity feed can
include who made the action, which field was changed, and
the old and new values. In one implementation, entity feeds
can exist on all supported records as a list that is linked to the
specific record. For example, a feed could be stored in a field
that allows lists (e.g., linked lists) or as a child object.

IV. Tracking Actions of a User

In addition to knowing about events associated with a
particular record, it can be helpful for a user to know what a
particular user is doing. In particular, it might be nice to know
what the user is doing without the user having to generate the
feed tracked update (e.g., a user submitting a synopsis of what
the user has done). Accordingly, implementations can auto-
matically track actions of a user that trigger events, and feed
tracked updates can be generated for certain events.

FIG. 5 shows a flowchart of an example of a method 500 for
tracking actions of a user of a database system, performed in
accordance with some implementations. Method 500 may be
performed in addition to method 300. The operations of
method 300, including order of blocks, can be performed in
conjunction with method 500 and other methods described
herein. Thus, a feed can be composed of changes to a record
and actions of users.

In block 510, a database system (e.g., 16 of FIGS. 1A and
1B) identifies an action of a first user. In one implementation,
the action triggers an event, and the event is identified. For
example, the action of a user requesting an update to a record
can be identified, where the event is receiving a request or is
the resulting update of a record. The action may thus be
defined by the resulting event. In another implementation,
only certain types of actions (events) are identified. Which
actions are identified can be set as a default or can be config-
urable by a tenant, or even configurable at a user level. In this
way, processing effort can be reduced since only some actions
are identified.

In block 520, it is determined whether the event qualifies
for a feed tracked update. In one implementation, a predefined
list of events (e.g., as mentioned herein) can be created so that
only certain actions are identified. In one implementation, an
administrator (or other user) of a tenant can specity the type of
actions (events) for which a feed tracked update is to be
generated. This block may also be performed for method 300.

In block 530, a feed tracked update is generated about the
action. In an example where the action is an update of a
record, the feed tracked update can be similar or the same as
the feed tracked update created for the record. The description
can be altered though to focus on the user as opposed to the
record. For example, “John D. has closed a new opportunity
for account XYZ” as opposed to “an opportunity has been
closed for account XYZ?”

In block 540, the feed tracked update is added to a profile
feed of the first user when, e.g., the user clicks on a tab to open
a page in a browser program displaying the feed. In one
implementation, a feed for a particular user can be accessed
on a page of the user’s profile, in a similar manner as a record
feed can be accessed on a detail page of the record. In another
implementation, the first user may not have a profile feed and
the feed tracked update may just be stored temporarily before
proceeding. A profile feed of a user can be stored associated
with the user’s profile. This profile feed can be added to a
news feed of another user.

In block 550, followers of the first user are identified. In
one implementation, a user can specity which type of actions
other users can follow. Similarly, in one implementation, a
follower can select what actions by a user the follower wants
to follow. In an implementation where different followers

30

40

45

26

follow different types of actions, which users are followers of
that user and the particular action can be identified, e.g., using
various lists that track what actions and criteria are being
followed by a particular user. In various implementations, the
followers of the first user can be identified in a similar manner
as followers of a record, as described above for block 350.

In block 560, the feed tracked update is added to a news
feed of each follower of the first user when, e.g., the follower
clicks on a tab to open a page displaying the news feed. The
feed tracked update can be added in a similar manner as the
feed items for a record feed. The news feed can contain feed
tracked updates both about users and records. In another
implementation, a user can specify what kind of feed tracked
updates to receive about a user that the user is following. For
example, a user could specify feed tracked updates with par-
ticular keywords, of certain types of records, of records
owned or created by certain users, particular fields, and other
criteria as mentioned herein.

Inblock 570, a follower accesses the news feed and sees the
feed tracked update. In one implementation, the user has just
one news feed for all of the records that the user is following.
In another implementation, a user can access his/her own feed
(i.e. feed about his’her own actions) by selecting a particular
tab or other object on a page of an interface to the database
system. Thus, a feed can include feed tracked updates about
what other users are doing in the database system. When a
user becomes aware of a relevant action of another user, the
user can contact the co-worker, thereby fostering teamwork.

V. Generation of a Feed Tracked Update

As described above, some implementations can generate
text describing events (e.g., updates) that have occurred for a
record and actions by a user that trigger an event. A database
system can be configured to generate the feed tracked updates
for various events in various ways.

A. Which Events to Generate a Feed Tracked Update

In a database system, there are various events that can be
detected. However, the operator of the database system and/or
a tenant may not want to detect every possible event as this
could be costly with regards to performance. Accordingly, the
operator and/or the tenant can configure the database system
to only detect certain events. For example, an update of a
record may be an event that is to be detected.

Out of the events that are detected, a tenant (including a
specific user of the tenant) may not want a feed tracked update
about each detected event. For example, all updates to a
record may be identified at a first level. Then, based on speci-
fications of an administrator and/or a specific user of a tenant,
another level of inquiry can be made as to whether a feed
tracked update is to be generated about the detected event. For
example, the events that qualify for a feed tracked update can
be restricted to changes for only certain fields of the record,
and can differ depending on which user is receiving the feed.
In one implementation, a database system can track whether
an event qualifies for a feed tracked update for any user, and
once the feed tracked update is generated, it can be deter-
mined who is to receive the feed tracked update.

Supported events (events for which a feed tracked update is
generated) can include actions for standard fields, custom
fields, and standard related lists. Regarding standard fields,
for the entity feed and the profile feed, a standard field update
can trigger a feed tracked update to be presented in that feed.
In one implementation, which standard field can create a feed
tracked update can be set by an administrator to be the same
for every user. In another implementation, a user can set
which standard fields create a feed tracked update for that
user’s news feed. Custom fields can be treated the same or
differently than standard fields.

US 9,178,753 B2

27

The generation of a feed item can also depend on a rela-
tionship of an object to other objects (e.g., parent-child rela-
tionships). For example, if a child object is updated, a feed
tracked update may be written to a feed of a parent of the child
object. The level of relationship can be configured, e.g., only
1 level of separation (i.e. no grandparent-grandchild relation-
ship). Also, in one implementation, a feed tracked update is
generated only for objects above the objects being updated,
i.e., a feed tracked update is not written for a child when the
parent is updated.

In some implementations, for related lists of a record, a
feed tracked update is written to its parent record (1 level
only) when the related list item is added, and not when the list
item is changed or deleted. For example: user A added a new
opportunity XYZ for account ABC. In this manner, entity
feeds can be controlled so as not to be cluttered with feed
tracked updates about changes to their related items. Any
changes to the related list item can be tracked on their own
entity feed, if that related list item has a feed on it. In this
implementation, if a user wants to see a feed of the related list
item then the user can subscribe to it. Such a subscription
might be when a user cares about a specific opportunity
related to a specific account. A user can also browse to that
object’s entity feed. Other implementations can create a feed
tracked update when a related entity is changed or deleted.

In one implementation, an administrator (of the system or
of'a specific tenant) can define which events of which related
objects are to have feed tracked updates written about them in
a parent record. In another implementation, a user can define
which related object events to show. In one implementation,
there are two types of related lists of related objects: first class
lookup and second class lookup. Each of the records in the
related lists can have a different rule for whether a feed
tracked update is generated for a parent record. Each of these
related lists can be composed as custom related lists. In vari-
ous implementations, a custom related list can be composed
of custom objects; the lists can contain a variety of records or
items (e.g., not restricted to a particular type of record or
item), and can be displayed in a customized manner.

In one implementation, a first class lookup contains records
of a child record that can exist by itself. For example, the
contacts on an account exist as a separate record and also as a
child record of the account. In another implementation, a
record in a first class lookup can have its own feed, which can
be displayed on its detail page.

In one implementation, a second class lookup can have line
items existing only in the context of their parent record (e.g.,
activities on an opportunity, contact roles on opportunity/
contact). In one implementation, the line items are not objects
themselves, and thus there is no detail page, and no place to
put a feed. In another implementation, a change in a second
class lookup can be reported on the feed of the parent.

Some implementations can also create feed tracked
updates for dependent field changes. A dependent field
change is a field that changes value when another field
changes, and thus the field has a value that is dependent on the
value of the other field. For example, a dependent field might
be a sum (or other formula) that totals values in other fields,
and thus the dependent field would change when one of the
fields being summed changes. Accordingly, in one implemen-
tation, a change in one field could create feed tracked updates
for multiple fields. In other implementations, feed tracked
updates are not created for dependent fields.

B. How the Feed Tracked Update is Generated

After it is determined that a feed tracked update is going to
be generated, some implementations can also determine how
the feed tracked update is generated. In one implementation,

10

15

20

25

30

35

40

45

50

55

60

65

28

different methods can be used for different events, e.g., in a
similar fashion as for the configurability of which events feed
tracked updates are generated. A feed tracked update can also
include a description of multiple events (e.g., john changed
the account status and amount).

In one implementation, the feed tracked update is a gram-
matical sentence, thereby being easily understandable by a
person. In another implementation, the feed tracked update
provides detailed information about the update. In various
examples, an old value and new value for a field may be
included in the feed tracked update, an action for the update
may be provided (e.g., submitted for approval), and the names
of particular users that are responsible for replying or acting
on the feed tracked update may be also provided. The feed
tracked update can also have a level of importance based on
settings chosen by the administrator, a particular user request-
ing an update, or by a following user who is to receive the feed
tracked update, which fields is updated, a percentage of the
change in a field, the type of event, or any combination of
these factors.

The system may have a set of heuristics for creating a feed
tracked update from the event (e.g., a request to update). For
example, the subject may be the user, the record, or a field
being added or changed. The verb can be based on the action
requested by the user, which can be selected from a list of
verbs (which may be provided as defaults or input by an
administrator of a tenant). In one implementation, feed
tracked updates can be generic containers with formatting
restrictions,

As an example of a feed tracked update for a creation of a
new record, “Mark Abramowitz created a new Opportunity
for IBM-20,000 laptops with Amount as $3.5M and Sam
Palmisano as Decision Maker.” This event can be posted to
the profile feed for Mark Abramowitz and the entity feed for
record of Opportunity for IBM-20,000 laptops. The pattern
can be given by (AgentFullName) created a new (Object-
Name)(RecordName) with [(FieldName) as (FieldValue)
[,/and]]*[[added/changed/removed] (RelatedListRecord-
Name) [as/to/as](RelatedListRecordValue) [,/and]]*. Similar
patterns can be formed for a changed field (standard or cus-
tom) and an added child record to a related list.

V1. Tracking Commentary from or about a User

Some implementations can also have a user submit text,
instead of the database system generating a feed tracked
update. As the text is submitted as part or all of a message by
auser, the text can be about any topic. Thus, more information
than just actions of a user and events of a record can be
conveyed. In one implementation, the messages can be used
to ask a question about a particular record, and users follow-
ing the record can provide comments and responses.

FIG. 6 shows a flowchart of an example of a method 600 for
creating a news feed from messages created by a user about a
record or another user, performed in accordance with some
implementations. In one implementation, method 600 can be
combined with methods 300 and 500. In one aspect, a mes-
sage can be associated with the first user when the first user
creates the message (e.g., a post or comment about a record or
another user). In another aspect, a message can be associated
with the first user when the message is about the first user
(e.g., posted by another user on the first user’s profile feed).

Inblock 610, the database system receives a message (e.g.,
a post or status update) associated with a first user. The mes-
sage (e.g., a post or status update) can contain text and/or
multimedia content submitted by another user or by the first
user. In one implementation, a post is for a section of the first
user’s profile page where any user can add a post, and where
multiple posts can exist. Thus, a post can appear on the first

US 9,178,753 B2

29

user’s profile page and can be viewed when the first user’s
profile is visited. For a message about a record, the post can
appear on a detail page of a record. Note the message can
appear in other feeds as well. In another implementation, a
status update about the first user can only be added by the first
user. In one implementation, a user can only have one status
message.

In block 620, the message is added to a table, as described
in greater detail below. When the feed is opened, a query
filters one or more tables to identify the first user, identify
other persons that the user is following, and retrieve the
message. Messages and record updates are presented in a
combined list as the feed. In this way, in one implementation,
the message can be added to a profile feed of the first user,
which is associated (e.g., as a related list) with the first user’s
profile. In one implementation, the posts are listed indefi-
nitely. In another implementation, only the most recent posts
(e.g., last 50) are kept in the profile feed. Such implementa-
tions can also be employed with feed tracked updates. In yet
another implementation, the message can be added to a pro-
file of the user adding the message.

In block 630, the database system identifies followers of
the first user. In one implementation, the database system can
identify the followers as described above for method 500. In
various implementations, a follower can select to follow a
feed about the actions of the first user, messages about the first
user, or both (potentially in a same feed).

In block 640, the message is added to a news feed of each
follower. In one implementation, the message is only added to
a news feed of a particular follower if the message matches
some criteria, e.g., the message includes a particular keyword
or other criteria. In another implementation, a message can be
deleted by the user who created the message. In one imple-
mentation, once deleted by the author, the message is deleted
from all feeds to which the message had been added.

Inblock 650, the follower accesses a news feed and sees the
message. For example, the follower can access a news feed on
the follower’s own profile page. As another example, the
follower can have a news feed sent to his/her own desktop
without having to first go to a home page.

In block 660, the database system receives a comment
about the message. The database system can add the comment
to a feed of the same first user, much as the original message
was added. In one implementation, the comment can also be
added to a feed of a second user who added the comment. In
one implementation, users can also reply to the comment. In
another implementation, users can add comments to a feed
tracked update, and further comments can be associated with
the feed tracked update. In yet another implementation, mak-
ing a comment or message is not an action to which a feed
tracked update is created. Thus, the message may be the only
feed item created from such an action.

In one implementation, if a feed tracked update or post is
deleted, its corresponding comments are deleted as well. In
another implementation, new comments on a feed tracked
update or post do not update the feed tracked update times-
tamp. Also, the feed tracked update or post can continue to be
shown in a feed (profile feed, record feed, or news feed) if it
has had a comment within a specified timeframe (e.g., within
the last week). Otherwise, the feed tracked update or post can
be removed in an implementation.

In some implementations, all or most feed tracked updates
can be commented on. In other implementations, feed tracked
updates for certain records (e.g., cases or ideas) are not com-
mentable. In various implementations, comments can be
made for any one or more records of opportunities, accounts,
contacts, leads, and custom objects.

25

40

45

30

In block 670, the comment is added to a news feed of each
follower. In one implementation, a user can make the com-
ment within the user’s news feed. Such a comment can propa-
gate to the appropriate profile feed or record feed, and then to
the news feeds of the following users. Thus, feeds can include
what people are saying, as well as what they are doing. In one
aspect, feeds are a way to stay up-to-date (e.g., on users,
opportunities, etc.) as well as an opportunity to reach out to
co-workers/partners and engage them around common goals.

In some implementations, users can rate feed tracked
updates or messages (including comments). A user can
choose to prioritize a display of a feed so that higher rated
feed items show up higher on a display. For example, in an
implementation where comments are answers to a specific
question, users can rate the different status posts so thata best
answer can be identified. As another example, users are able
to quickly identify feed items that are most important as those
feed items can be displayed at a top of a list. The order of the
feed items can be based on an importance level (which can be
determined by the database system using various factors,
some of which are mentioned herein) and based on a rating
from users. In one implementation, the rating is on a scale that
includes at least 3 values. In another implementation, the
rating is based on a binary scale.

Besides a profile for a user, a group can also be created. In
various implementations, the group can be created based on
certain criteria that are common to the users, can be created by
inviting users, or can be created by receiving requests to join
from a user. In one implementation, a group feed can be
created, with messages being added to the group feed when
someone adds a message to the group as a whole. For
example, a group page may have a section for posts. In
another implementation, a message can be added to a group
feed when a message is added about any one of the members.
In yet another implementation, a group feed can include feed
tracked updates about actions of the group as a whole (e.g.,
when an administrator changes data in a group profile or a
record owned by the group), or about actions of an individual
member.

FIG. 7 shows an example of a group feed on a group page
according to some implementations. As shown, a feed item
710 shows that a user has posted a document to the group
object. The text “Bill Bauer has posted the document Com-
petitive Insights” can be generated by the database system in
a similar manner as feed tracked updates about a record being
changed. A feed item 720 shows a post to the group, along
with comments 730 from Ella Johnson, James Saxon, Mary
Moore and Bill Bauer.

FIG. 8 shows an example of a record feed containing a feed
tracked update, post, and comments according to some imple-
mentations. Feed item 810 shows a feed tracked update based
on the event of submitting a discount for approval. Other feed
items show posts, e.g., from Bill Bauer, that are made to the
record and comments, e.g., from Erica Law and Jake Rapp,
that are made on the posts.

VII. Infrastructure for a Feed

A. Tables Used to Create a Feed

FIG. 9A shows an example of a plurality of feed tracked
update tables that may be used in tracking events and creating
feeds according to some implementations. The tables of FIG.
9 A may have entries added, or potentially removed, as part of
tracking events in the database from which feed items are
creates or that correspond to feed items. In one implementa-
tion, each tenant has its own set of tables that are created
based on criteria provided by the tenant.

An event history table 910 can provide a feed tracked
update of events from which feed items are created. In one

US 9,178,753 B2

31

aspect, the events are for objects that are being tracked. Thus,
table 910 can store and change feed tracked updates for feeds,
and the changes can be persisted. In various implementations,
event history table 910 can have columns of event 1D 911,
object ID 912 (also called parent ID), and created by ID 913.
The event ID 911 can uniquely identify a particular event and
can start at 1 (or other number or value).

Each new event can be added chronologically with a new
event ID, which may be incremented in order. An object ID
912 can be used to track which record or user’s profile is being
changed. For example, the object ID can correspond to the
record whose field is being changed or the user whose feed is
receiving a post. The created by ID 913 can track the user who
is performing the action that results in the event, e.g., the user
that is changing the field or that is posting a message to the
profile of another user.

In some other implementations, event history table 910 can
have one or more of the following variables with certain
attributes: ORGANIZATION_ID being CHAR(15 BYTE),
FEEDS_ENTITY_HIFEED TRACKED_UPDATE_ID
being CHAR(15 BYTE), PARENT_ID being CHAR(15
BYTE), CREATED_BY being CHAR(15 BYTE), CREAT-
ED_DATE being a variable of type DATE, DIVISION being
a NUMBER, KEY_PREFIX being CHAR(3 BYTE), and
DELETED being CHAR(1 BYTE). The parent ID can pro-
vide an ID of a parent object in case the change is promul-
gated to the parent. The key prefix can provide a key that is
unique to a group of records, e.g., custom records (objects).
The deleted variable can indicate that the feed items for the
event are deleted, and thus the feed items are not generated. In
one implementation, the variables for each event entry or any
entry in any of the tables may not be nullable. In another
implementation, all entries in the event history table 910 are
used to create feed items for only one object, as specified by
the object ID 912. For example, one feed tracked update
cannot communicate updates on two records, such as updates
of an account field and an opportunity field.

In one implementation, a name of an event can also be
stored in table 910. In one implementation, a tenant can
specify events that they want tracked. In an implementation,
event history table 910 can include the name of the field that
changed (e.g., old and new values). In another implementa-
tion, the name of the field, and the values, are stored in a
separate table. Other information about an event (e.g., text of
comment, feed tracked update, post or status update) can be
stored in event history table 910, or in other tables, as is now
described.

A field change table 920 can provide a feed tracked update
of the changes to the fields. The columns of table 920 can
include an event ID 921 (which correlates to the event ID
911), an old value 922 for the field, and the new value 923 for
the field. In one implementation, if an event changes more
than one field value, then there can be an entry for each field
changed. As shown, event ID 921 has two entries for event
E37.

In some other implementations, field change table 920 can
have one or more of the following variables with certain
attributes: ORGANIZATION_ID being CHAR(15 BYTE),
FEEDS_ENTITY_HIFEED TRACKED_UPDATE _
FIELDS ID being CHAR(15 BYTE) and identifying each
entry, FEEDS_ENTITY_HIFEED TRACKED UPDATE_ID
being CHAR(15 BYTE), FIELD_KEY being VARCHAR?2
(120 BYTE), DATA_TYPE being CHAR(1 BYTE), OLD-
VAL_STRING_VARCHAR2 being (765 BYTE),
NEWVAL_STRING being VARCHAR2(765 BYTE), OLD-
VAL_FIRST NAME being VARCHAR2(765 BYTE),
NEWVAL_FIRST_NAME being VARCHAR2(765 BYTE),

40

45

55

32
OLDVAL_LAST NAME being VARCHAR2(765 BYTE),
NEWVAL_LAST _NAME being VARCHAR2(765 BYTE),
OLDVAL_NUMBER being NUMBER, NEWVAL_NUM-
BER being NUMBER, OLDVAL_DATE being DATE,
NEWVAL_DATE being DATE, and DELETED being
CHAR(1 BYTE). In one implementation, one or more of the
variables for each entry in any of the tables may be nullable.

In one implementation, the data type variable (and/or other
variables) is a non-API-insertable field. In another implemen-
tation, variable values can be derived from the record whose
field is being changed. Certain values can be transferred into
typed columns old/new value string, old/new value number or
old/new value date depending upon the derived values. In
another implementation, there can exist a data type for cap-
turing add/deletes for child objects. The child ID can be
tracked in the foreign-key column ofthe record. In yet another
implementation, if the field name is pointing to a field in the
parent entity, a field level security (FLS) can be used when a
user attempts to a view a relevant feed item. Herein, security
levels for objects and fields are also called access checks and
determinations of authorization. In one aspect, the access can
be for create, read, write, update, or delete of objects.

Inone implementation, the field name (orkey) can be either
afield name of the entity or one of the values in a separate list.
For example, changes that do not involve the update of an
existing field (e.g., a close or open) can have a field name
specified in an enumerated list. This enumerated list can store
“special” field name sentinel values for non-update actions
that a tenant wants to track. In one aspect, the API just sur-
faces these values and the caller has to check the enumerated
values to see if it is a special field name.

A comment table 930 can provide a feed tracked update of
the comments made regarding an event, e.g., a comment on a
post or a change of a field value. The columns of table 930 can
include an event ID 921 (which correlates to the event ID
911), the comment column 932 that stores the text of the
comment, and the time/date 933 of the comment. In one
implementation, there can be multiple comments for each
event. As shown, event ID 921 has two entries for event E37.

In some other implementations, comment table 930 can
have one or more of the following variables with certain
attributes: ORGANIZATION_ID being CHAR(15 BYTE),
FEEDS_COMMENTS ID being CHAR(15 BYTE) and
uniquely identifying each comment, PARENT_ID being
CHAR(15BYTE), CREATED_BY being CHAR(15BYTE),
CREATED_DATE being DATE, COMMENTS being VAR-
CHAR2(420 BYTE), and DELETED being CHAR(1
BYTE).

A user subscription table 940 can provide a list of the
objects being followed (subscribed to) by a user. In one imple-
mentation, each entry has a user ID 941 of the user doing the
following and one object ID 942 corresponding to the object
being followed. In one implementation, the object being fol-
lowed can be a record or a user. As shown, the user with 1D
U819 is following object IDs 0615 and 0489. [fuser U819 is
following other objects, then additional entries may exist for
user U819. Also as shown, user U719 is also following object
0615. The user subscription table 940 can be updated when a
user adds or deletes an object that is being followed.

In some other implementations, user subscription table 940
can be composed of two tables (one for records being fol-
lowed and one for users being followed). One table can have
one or more of the following variables with certain attributes:
ORGANIZATION_ID being CHAR(15 BYTE), ENTI-
TY_SUBSCRIPTION_ID being CHAR(15 BYTE),
PARENT_ID being CHAR(15 BYTE), CREATED_BY
being CHAR(15 BYTE), CREATED_DATE being DATE,

US 9,178,753 B2

33

and DELETED being CHAR(1 BYTE). Another table can
have one or more of the following variables with certain
attributes: ORGANIZATION_ID being CHAR(15 BYTE),
USER_SUBSCRIPTIONS_ID being CHAR(15 BYTE),
USER_ID being CHAR(15 BYTE), CREATED_BY being
CHAR(15 BYTE), and CREATED_DATE being DATE.

In one implementation, regarding a profile feed and a news
feed, these are read-only views on the event history table 910
specialized for these feed types. Conceptually the news feed
can be a semi join between the user subscription table 940 and
the event history table 910 on the object IDs 912 and 942 for
the user. In one aspect, these entities can have polymorphic
parents and can be subject to a number of restrictions detailed
herein, e.g., to limit the cost of sharing checks.

In one implementation, entity feeds are modeled in the API
as a feed associate entity (e.g., AccountFeed, CaseFeed, etc).
A feed associate entity includes information composed of
events (e.g., event IDs) for only one particular record type.
Such a list can limit the query (and sharing checks) to a
specific record type. In one aspect, this structuring of the
entity feeds can make the query run faster. For example, a
request for a feed of a particular account can include the
record type of account. In one implementation, an account
feed table can then be searched, where the table has account
record IDs and corresponding event IDs or pointers to par-
ticular event entries in event history table 910. Since the
account feed table only contains some of the records (not all),
the query can run faster.

In one implementation, there may be objects with no events
listed in the event history table 910, even though the record is
being tracked. In this case, the database service can return a
result indicating that no feed items exist.

In another implementation, tables can also exist for audit
tracking, e.g., to examine that operations of the system (e.g.,
access checks) are performing accurately. In one implemen-
tation, audit change-event history tables can be persisted
(e.g., in bulk) synchronously in the same transaction as feed
events are added to event history table 910. In another imple-
mentation, entries to the two sets of table can be persisted in
asynchronous manner (e.g., by forking a bulk update into a
separate java thread). In one aspect, some updates to any of
the tables can get lost if the instance of the table goes down
while the update has not yet finished. This asynchronous
manner can limit an impact performance on save operations.
In some implementations, a field “persistence type” (tri state:
AUDIT, FEEDS or BOTH) can be added to capture user
preferences, as opposed to being hard coded.

B. Feed Item

A feed item can represent an individual field change of a
record, creation and deletion of a record, or other events being
tracked for a record or auser. In one implementation, all of the
feed items in a single transaction (event) can be grouped
together and have the same event ID. A single transaction
relates to the operations that can be performed in a single
communication with the database. In another implementation
where a feed is an object of the database, a feed item can be a
child of a profile feed, news feed, or entity feed. If a feed item
is added to multiple feeds, the feed item can be replicated as
a child of each feed to which the feed item is added.

In one implementation, a feed item is visible only when its
parent feed is visible, which can be the same as needing read
access on the feed’s parent (which can be by the type of record
or by a specific record). The feed item’s field may be only
visible when allowed under field-level security (FLS). Unfor-
tunately, this can mean that the parent feed may be visible, but
the child may not be because of FLS. Such access rules are
described in more detail below. In one implementation, a feed

10

15

20

25

30

35

40

45

50

55

60

65

34

item can be read-only. In this implementation, after being
created, the feed item cannot be changed.

In multi-currency organizations, a feed item can have an
extra currency code field. This field can give the currency
code for the currency value in this field. In one aspect, the
value is undefined when the data type is anything other than
currency.

C. Feed Comment

In some implementations, a comment exists as an item that
depends from feed tracked updates, posts, status updates, and
other items that are independent of each other. Thus, a feed
comment object can exist as a child object of a feed item
object. For example, comment table 930 can be considered a
child table of event history table 910. In one implementation,
a feed comment can be a child of a profile feed, news feed, or
entity feed that is separate from other feed items.

Invarious implementations, a feed comment can have vari-
ous permissions for the following actions. For read permis-
sion, a feed comment can be visible if the parent feed is
visible. For create permission, if a user has access to the feed
(which can be tracked by the ID of the parent feed), the user
can add a comment. For delete, only a user with modify all
data permission or a user who added the comment can delete
the comment. Also delete permission can involve access on
the parent feed. Anupdate of a comment can be restricted, and
thus not be allowed.

In one implementation, regarding a query restriction, a
feed comment cannot be queried directly, but can be queried
only via the parent feed. An example is “select id, parentid,
(select . . . from feedcomment) from entityfeed”. In another
implementation, a feed comment can be directly queries, e.g.,
by querying comment table 930. A query could include the
text of a comment or any other column of the table.

In another implementation, regarding soft delete behavior,
a feed comment table does not have a soft delete column. A
soft delete allows an undelete action. In one implementation,
a record can have a soft delete. Thus, when the record is
deleted, the feed (and its children) can be soft deleted. There-
fore, in one aspect, a feed comment cannot be retrieved via the
“query” verb (which would retrieve only the comment), but
can be retrieved via “queryAll” verb though. An example is
queryAll(“select id, (select id, commentbody from feedcom-
ments) from accountfeed where
parentid="001x000xxx3MkADAAO0”); I where
‘001x000xxx3MKADAAOQ’ has been soft deleted. When a
hard delete (a physical delete) happens, the comment can be
hard deleted from the database.

In one implementation, regarding an implicit delete, feeds
with comments are not deleted by a reaper (a routine that
performs deletion). In another implementation, a user cannot
delete a feed. In yet another implementation, upon lead con-
vert (e.g., to an opportunity or contact), the feed items of the
lead can be hard deleted. This implementation can be config-
ured to perform such a deletion for any change in record type.
In various implementations, only the comments are hard
deleted upon a lead convert, other convert, or when the object
is deleted (as mentioned above).

In one implementation, viewing a feed pulls up the most
recent messages or feed tracked updates (e.g., 25) and
searches the most recent (e.g., 4) comments for each feed
item. The comments can be identified via the comment table
930. In one implementation, a user can request to see more
comments, e.g., by selecting a see more link.

In some implementations, user feeds and/or entity feeds
have a last comment date field. In various implementations,
the last comment date field is stored as a field of arecord or a
user profile. For feeds with no comments, this can be the same

US 9,178,753 B2

35

as the created date. Whenever a new comment is created, the
associated feed’s last comment date can be updated with the
created date of the comment. The last comment date is
unchanged if a feed comment is deleted. A use case is to allow
people to order their queries to see the feeds, which have been
most recently commented on.

D. Creating Custom Feeds by Customizing the Event His-
tory Table

In some implementations, a tenant (e.g., through an admin-
istrator) or a specific user of a tenant can specify the types of
events for which feed items are created. A user can add more
events or remove events from a list of events that get added to
the event history table 910. In one implementation, a trigger
can be added as a piece of code, rule, or item on a list for
adding a custom event to the event history table 910. These
custom events can provide customers the ability to create
their own custom feeds and custom feed items to augment or
replace implicitly generated feeds via event history table 910.
Implicitly generated feed data can be created when feed-
tracking is enabled for certain entities/field-names. In one
implementation, in order to override implicit feeds, feed
tracking can be turned off and then triggers can be defined by
the user to add events to the event history table 910. In other
implementations, users are not allowed to override the default
list of events that are added to table 910, and thus cannot
define their own triggers for having events tracked.

For example, upon lead convert or case close, a default
action to be taken by the system may be to add multiple events
to event history table 910. If a customer (e.g., a tenant or a
specific user) does not want each of these events to show up as
feed items, the customer can turn off tracking for the entities
and generate custom feeds by defining customized triggers
(e.g., by using an API) upon the events. As another example,
although data is not changed, a customer may still want to
track an action on a record (e.g., status changes if not already
being tracked, views by certain people, retrieval of data, etc.).

In one implementation, if a user does not want a feed item
to be generated upon every change on a given field, but only
if the change exceeds a certain threshold or range, then such
custom feeds can be conditionally generated with the custom-
ized triggers. In one implementation, the default tracking for
the record or user may be turned off for this customization so
that the events are only conditionally tracked. In another
implementation, a trigger can be defined that deletes events
that are not desired, so that default tracking can still be turned
on for a particular object type. Such conditional tracking can
be used for other events as well.

In some implementations, defining triggers to track certain
events can be done as follows. A user can define an objecttype
to track. This object type can be added to a list of objects that
can be tracked for a particular tenant. The tenant can remove
object types from this list as well. Custom objects and stan-
dard objects can be on the list, which may, for example, be
stored in cache or RAM of a server or in the database. Gen-
erally only one such list exists for a tenant, and users do not
have individual lists for themselves, although in some imple-
mentations, they may particularly when the number of users
in a tenant is small.

In one implementation, a tenant can select which records of
an object type are to be tracked. In another implementation,
once an object type is added to the tracking list of object types,
then all records of that type are tracked. The tenant can then
specify the particulars of how the tracking is to be performed.
For example, the tenant can specify triggers as described
above, fields to be tracked, or any of the customizations
mentioned herein.

10

15

20

25

30

35

40

45

50

55

60

65

36

In some implementations, when a feed is defined as an
object in the database (e.g., as a child object of entity records
that can be tracked), a particular instance of the feed object
(e.g., for a particular record) can be create-able and delete-
able. In one implementation, if a user has access to a record
then the user can customize the feed for the record. In one
implementation, a record may be locked to prevent customi-
zation of its feed.

One method of creating a custom feed for users of a data-
base system according to implementations is now described.
Any of the following blocks can be performed wholly or
partially with the database system, and in particular by one or
more processor of the database system.

Inblock A, one or more criteria specifying which events are
to be tracked for possible inclusion into a feed to be displayed
are received from a tenant. In block B, data indicative of an
event is received. In block C, the event is analyzed to deter-
mine if the criteria are satisfied. In block D, if the criteria are
satisfied, at least a portion of the data is added to a table (e.g.,
one or more of the tables in FIG. 9A) that tracks events for
inclusion into at least one feed for a user of the tenant. The
feed in which feed items of an event may ultimately be dis-
played can be a news feed, record feed, or a profile feed.

E. Creating Custom Feeds with Filtering

After feed items have been generated, they can be filtered
so that only certain feed items are displayed, which may be
tailored to a specific tenant and/or user. In one implementa-
tion, a user can specify changes to a field that meet certain
criteria for the feed item to show up in a feed displayed to the
user, e.g., a news feed or even an entity feed displayed directly
to the user. In one implementation, the criteria can be com-
bined with other factors (e.g., number of feed items in the
feed) to determine which feed items to display. For instance,
if a small number of feed items exist (e.g., below a threshold),
then all of the feed items may be displayed.

In one implementation, a user can specify the criteria via a
query on the feed items in his/her new feed, and thus a feed
may only return objects of a certain type, certain types of
events, feed tracked updates about certain fields, and other
criteria mentioned herein. Messages can also be filtered
according to some criteria, which may be specified in a query.
Such an added query can be added onto a standard query that
is used to create the news feed for a user. A first user could
specify the users and records that the first user is following in
this manner, as well as identify the specific feed items that the
first user wants to follow. The query could be created through
a graphical interface or added by a user directly in a query
language. Other criteria could include receiving only posts
directed to a particular user or record, as opposed to other feed
items.

In one implementation, the filters can be run by defining
code triggers, which run when an event, specific or otherwise,
occurs. The trigger could then run to perform the filtering at
the time the event occurs or when a user (who has certain
defined triggers, that is configured for a particular user)
requests a display of the feed. A trigger could search for
certain terms (e.g., vulgar language) and then remove such
terms or not create the feed item. A trigger can also be used to
send the feed item to a particular person (e.g., an administra-
tor) who does not normally receive the feed item were it not
for the feed item containing the flagged terms.

F. Access Checks

In one implementation, a user can access a feed of a record
if the user can access the record. The security rules for deter-
mining whether a user has access to arecord can be performed
in a variety of ways, some of which are described in com-
monly assigned U.S. Pat. No. 8,095,531, titted METHODS

US 9,178,753 B2

37

AND SYSTEMS FOR CONTROLLING ACCESS TO CUS-
TOM OBJECTS IN A DATABASE, by Weissman et al.,
issued onJan. 10, 2012, and hereby incorporated by reference
in its entirety and for all purposes. For example, a security
level table can specity whether a user can see a particular type
of record and/or particular records. In one implementation, a
hierarchy of positions within a tenant is used. For example, a
manager can inherit the access levels of employees that the
manager supervises. Field level security (FLS) can also be
used to determine whether a particular feed tracked update
about an update to a field can be seen by the user. The field
change table 920 can be used to identify a field name or field
1D, and then whether the user has read access to that field can
be determined from an FLS table. For example, if a user could
not see a field of a social security number, the feed of the user
provided to the user would not include any feed items related
to the social security number field.

In one implementation, a user can edit a feed of a record if
the user has access to the record, e.g., deleting or editing a
feed item. In another implementation, a user (besides an
administrator) cannot edit a feed item, except for performing
an action from which a feed item can be created. In one
example, auser is first has to have access to a particular record
and field for a feed item to be created based on an action of the
user. In this case, an administrator can be considered to be a
user with MODIFY-ALL-DATA security level. In yet another
implementation, a user who created the record can edit the
feed.

G. Posts

In one implementation, the text of posts are stored in a child
table (post table 950), which can be cross-referenced with
event history table 910. Post table 950 can include event ID
951 (to cross-reference with event ID 911), post text 952 to
store the text of the post, and time/date 953. An entry in post
table 950 can be considered a feed post object. Posts for a
record can also be subject to access checks. In one implemen-
tation, if a user can view a record then all of the posts can be
seen, i.e. there is not an additional level of security check as
there is for FLS. In another implementation, an additional
security check could be done, e.g., by checking on whether
certain keywords (or phrases) exist in the post. For instance,
a post may not be not provided to specified users if a certain
keyword exists, or only provided to specified users if a key-
word exists. In another implementation, a table can exist for
status updates.

VIII. Subscribing to Users and Records to Follow

As described above, a user can follow users, groups, and
records. Implementations can provide mechanisms for a user
to manage which users, groups, and records that the user is
currently following. In one implementation, a user can be
limited to the number of users and records (collectively or
separately) that the user can follow. For example, a user may
be restricted to only following 10 users and 15 records, or as
another example, 25 total. Alternatively, the user may be
permitted to follow more or less users.

In one implementation, a user can go to a page of a record
and then select to follow that object (e.g., with a button
marked “follow” or “join”). Inanother implementation, a user
can search for a record and have the matching records show
up in a list. The search can include criteria of records that the
user might want to follow. Such criteria can include the
owner, the creation date, last comment date, and numerical
values of particular fields (e.g., an opportunity with a value of
more than $10,000).

A follow button (or other activation object) can then reside
next to each record in the resulting list, and the follow button
can be selected to start following the record. Similarly, a user

25

40

45

55

38

can go to a profile page of a user and select to follow the user,
or a search for users can provide a list, where one or more
users can be selected for following from the list. The selec-
tions of subscribing and unsubscribing can add and delete
rows in table 920.

In some implementations, a subscription center acts as a
centralized place in a database application (e.g., application
platform 18) to manage which records a user subscribes to,
and which field updates the user wants to see in feed tracked
updates. The subscription center can use a subscription table
to keep track of the subscriptions of various users. In one
implementation, the subscription center shows a list of all the
items (users and records) a user is subscribed to. In another
implementation, a user can unsubscribe to subscribed objects
from the subscription center.

A. Automatic Subscription

In one implementation, an automatic subscription feature
can ensure that a user is receiving certain feeds. In this man-
ner, a user does not have to actively select certain objects to
follow. Also, a tenant can ensure that a user is following
objects that the user needs to be following.

In various implementations for automatically following
users, a default for small organizations can be to follow every-
one. For big organizations, the default can be to follow a
manager and peers. If a user is a manager, the default can be
to follow the manager’s supervisor, peers, and people that the
manager supervises (subordinates). In other implementations
for automatically following records, records that the user
owns may be automatically followed and/or records recently
viewed (or changed) may be automatically followed.

In one example, a new record is created. The owner (not
necessarily the user who created the entity) is subscribed to
the entity. If ownership is changed, the new owner may auto-
matically be subscribed to follow the entity. Also, after a lead
convert, the user doing the lead convert may be automatically
subscribed to the new account, opportunity, or contact result-
ing from the lead convert. In one implementation, the auto
subscription is controlled by user preference. That is a user or
tenant can have the auto subscribe feature enabled or not. In
one aspect, the default is to have the auto-subscribe turned on.

FIG. 9B shows a flowchart of an example of a method 900
for automatically subscribing a user to an object in a database
system, performed in accordance with some implementa-
tions. Any of the following blocks can be performed wholly or
partially with the database system, and in particular by one or
more processor of the database system.

In block 901, one or more properties of an object stored in
the database system are received. The properties can be
received from administrators of the database system, or from
users of the database system (which may be an administrator
of'a customer organization). The properties can be records or
users, and can include any of the fields of the object that are
stored in the database system. Examples of properties of a
record include: an owner of the record, a user that converted
the record from one record type to another record type,
whether the first user has viewed the record, and a time the
first user viewed the record. Examples of properties of a user
include: which organization (tenant) the user is associated
with, the second user’s position in the same organization, and
which other users the user had e-mailed or worked with on
projects.

In block 902, the database system receives one or more
criteria about which users are to automatically follow the
object. The criteria can be received from administrators of the
database system, or from one or more users of the database
system. The users may be an administrator of a customer
organization, which can set tenant-wide criteria or criteria for

US 9,178,753 B2

39

specific users (who may also set the criteria themselves).
Examples of the criteria can include: an owner or creator of a
record is to follow the record, subordinates of an owner or
creator of a record are to follow the record, a user is to follow
records recently viewed (potentially after a specific number
of' views), records that a user has changed values (potentially
with a date requirement), records created by others in a same
business group as the user. Examples of the criteria can also
include: a user is to follow his/her manager, the user’s peers,
other users in the same business group as the user, and other
users that the user has e-mailed or worked with on a project.
The criteria can be specific to a user or group of users (e.g.,
users of a tenant).

In block 903, the database system determines whether the
one or more properties of the object satisfy the one or more
criteria for a first user. In one implementation, this determi-
nation can occur by first obtaining the criteria and then deter-
mining objects that satisfy the criteria. The determination can
occur periodically, at time of creation of an object, or at other
times. If different users have different criteria, then the crite-
ria for a particularuser or group could be searched at the same
time. Since users of different tenants normally cannot view
objects of another tenant, certain criteria does not have to be
checked. In another implementation, this determination can
occur by looking at certain properties and then identifying
any criteria that are met. In yet another implementation, the
criteria and properties can be used to find users that satisfy the
criteria.

In block 904, if the criteria are satisfied, the object is
associated with the first user. The association can be in a list
that stores information as to what objects are being followed
by the first user. User subscription table 940 is an example of
such a list. In one implementation, the one or more criteria are
satisfied if one property satisfies at least one criterion. Thus, if
the criteria are that a user follows his’her manager and the
object is the user’s manager, then the first user will follow the
object.

In one implementation, a user can also be automatically
unsubscribed, e.g., if a certain action happens. The action
could be a change in the user’s position within the organiza-
tion, e.g., a demotion or becoming a contractor. As another
example, if a case gets closed, then users following the case
may be automatically unsubscribed.

B. Feed and Subscription API

In one implementation, a feed and subscription center API
can enable tenants to provide mechanisms for tracking and
creating feed items, e.g., as described above for creating
custom feeds by allowing users to add custom events for
tracking. For example, after some initial feed items are cre-
ated (e.g., by administrators of the database system), outside
groups (e.g., tenants or software providers selling software to
the tenants) can ‘enable objects’ for feeds through a standard
API. The groups can then integrate into the subscription cen-
ter and the feed tracked update feeds on their own. In one
implementation, the feed and subscription center API can use
a graphical user interface implemented for the default feed
tracking. In one implementation, API examples include sub-
scribing to an entity by creating a new entity subscription
object for a particular user ID, or for all users of a tenant (e.g.,
user subscription table 940). In one implementation, obtain-
ing all subscriptions for a given user can be performed by
using a query, such as “select . . . from EntitySubscription
where userid="..."”.

Some implementations have restriction on non-admin
users, e.g., those without view all data permissions (VAD).
One restriction can be a limit clause on entity subscription
queries (e.g., queries on user subscription table 940), e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

40

where the limit of the number of operations is less than 100.
In one implementation, users are not required to specify an
order-by, but if an order-by is specified they can only order on
fields on the entity subscription entity. In one implementa-
tion, filters on entity subscription can likewise only specify
fields on the entity subscription entity. In one aspect, the
object ID being followed can be sorted or filtered, but not the
object name.

In one implementation, one or more restrictions can also be
placed on the identification of feed items in a feed that a user
can access. For example, if a low-level user (i.e. user can
access few objects) is attempting to see a profile feed of a high
level user, a maximum number of checks (e.g., 500) for access
rights may be allowed. Such a restriction can minimize a cost
of'a feed request. In some implementations, there are restric-
tion on the type of queries (e.g., fields for filtering) allowed to
construct on feeds (e.g., on tables in FIG. 9A).

C. Sharing

As mentioned above, users may be restricted from seeing
records from other tenants, as well as certain records from the
tenant to which the user belongs (e.g., the user’s employer).
Sharing rules can refer to the access rules that restrict a user
from seeing records that the user is not authorized to see or
access. Additionally, in one implementation, a user may be
restricted to only seeing certain fields of a record, field-level
security (FLS).

In an implementation, access rule checks are done upon
subscription. For example, a user is not allowed to subscribe
to arecord or type of record that the user cannot access. In one
aspect, this can minimize (but not necessarily eliminate)
cases where a user subscribes to entities they cannot access.
Such cases can slow down news feed queries, when an access
check is performed (which can end up removing much of the
feed items). Thus, a minimization of access checks can speed
up operation. In another implementation, when feed items are
created dynamically, access rule checks may be done dynami-
cally at the time of subsequent access, and not upon subscrip-
tion or in addition to at time of subscription.

An example case where access checks are still performed is
when a first user follows a second user, but the second user
performs some actions on records or is following records that
the first user is not allowed to see. The first user may be
allowed to follow the second user, and thus the subscription is
valid even though the first user may not be able to see all of the
feed items. Before a feed tracked update is provided to a news
feed of the first user, a security check may be performed to
validate whether the first user has access rights to the feed
item. If not, the feed item is not displayed to the first user. In
one implementation, users can be blocked from feed items
that contain certain terms, symbols, account numbers, etc. In
one implementation, any user can follow another user. In
another implementation, users may be restricted as to which
users, objects, and/or records he/she can follow.

Regarding viewing privileges of a feed, in one implemen-
tation, a user can see all of his own subscriptions (even it he’s
lost read access to a record). For example, a user can become
a contractor, and then the user may lose access to some
records. But, the user may still see that he/she is following the
object. This can help ifthere is a limit to the number of objects
that can be followed. To unsubscribe a user may need to know
what they are following so they can unsubscribe and sub-
scribe to objects the user can see. In another implementation,
for access to other people’s subscriptions, a user can be
required to need read-access on the record-id to see the sub-
scription. In some implementations, users with authorization
to modify all data can create/delete any subscription. In other

US 9,178,753 B2

41

implementations, a user can create/delete subscriptions only
for that user, and not anyone else.

D. Configuration of which Field to Follow

There can be various feed settings for which feed items get
added to profile and record feeds, and which get added to
news feeds. In one implementation, for profile feeds and
entity feeds, feed tracked updates can be written for all stan-
dard and custom fields on the supported objects. In one imple-
mentation, feed settings can be set to limit how many and
which fields of a record are tracked for determining whether
a feed tracked update is to be generated. For example, a user
or administrator can choose specific fields to track and/or
certain ones not to track. In another implementation, there is
a separate limit for the number of trackable fields (e.g., 20) for
a record. Thus, only certain changes may be tracked in an
entity feed tracked update and show up in the feed. In yet
another implementation, default fields may be chosen for
tracking, where the defaults can be exposed in the subscrip-
tions center.

IX. Adding Items to a Feed

As described above, a feed includes feed items, which
include feed tracked updates and messages, as defined herein.
Various feeds can be generated. For example, a feed can be
generated about a record or about a user. Then, users can view
these feeds. A user can separately view a feed of a record or
user, e.g., by going to a home page for the user or the record.
As described above, a user can also follow another user or
record and receive the feed items of those feeds through a
separate feed application (e.g., in a page or window), which is
termed “chatter” in certain examples. The feed application
can provide each of the feeds that a user is following and, in
some examples, can combine various feeds in a single infor-
mation feed.

A feed generator can refer to any software program running
on a processor or a dedicated processor (or combination
thereof) that can generate feed items (e.g., feed tracked
updates or messages) and combine them into a feed. In one
implementation, the feed generator can generate a feed item
by receiving a feed tracked update or message, identifying
what feeds the item should be added to, and adding the feed.
Adding the feed can include adding additional information
(metadata) to the feed tracked update or message (e.g., adding
a document, sender of message, a determined importance,
etc.). The feed generator can also check to make sure that no
one sees feed tracked updates for data that they don’t have
access to see (e.g., according to sharing rules). A feed gen-
erator can run at various times to pre-compute feeds or to
compute them dynamically, or combinations thereof.

In one implementation, the feed generator can de-dupe
events (i.e. prevent duplicates) that may come in from numer-
ous records (and users). For example, since a feed tracked
update can be published to multiple feeds (e.g., John Choe
changed the Starbucks Account Status) and a person can be
subscribed to both the Starbucks account and John Choe,
implementations can filter out duplicates before adding or
displaying the items in a news feed. Thus, the Feed Generator
can collapse events with multiple records and users for a
single transaction into a single feed tracked update and ensure
the right number of feed tracked updates for the particular
feed. In some implementations, an action by a user does not
create a feed item for that user (e.g., for a profile feed of that
user), and it is only the feed of the object being acted upon
(e.g., updated) for which a feed item is created. Thus, there
should not be duplicates. For example, if someone updates the
status of a record, the feed item is only for the record and not
the user.

10

15

20

25

30

35

40

45

50

55

60

65

42

In one implementation, processor 417 in FIG. 4 can iden-
tify an event that meets criteria for a feed tracked update, and
then generate the feed tracked update. Processor 417 can also
identify a message. For example, an application interface can
have certain mechanisms for submitting a message (e.g.,
“submit” buttons on a profile page, detail page of a record,
“comment” button on post), and use of these mechanisms can
be used to identity a message to be added to a table used to
create a feed or added directly to a list of feed items ready for
display.

A. Adding Items to a Pre-Computed Feed

In some implementations, a feed of feed items is created
before a user requests the feed. Such an implementation can
run fast, but have high overall costs for storage. In one imple-
mentation, once a profile feed or a record feed has been
created, a feed item (messages and feed tracked updates) can
be added to the feed. The feed can exist in the database system
in avariety of ways, such as arelated list. The feed can include
mechanisms to remove items as well as add them.

As described above, a news feed can be an aggregated feed
of all the record feeds and profile feeds to which a user has
subscribed. The news feed can be provided on the home page
of'the subscribing user. Therefore, a news feed can be created
by and exist for a particular user. For example, a user can
subscribe to receive entity feeds of certain records that are of
interest to the user, and to receive profile feeds of people that
are of interest (e.g., people on a same team, that work for the
user, are a boss of the user, etc.). A news feed can tell a user
about all the actions across all the records (and people) whom
have explicitly (or implicitly) been subscribed to via the sub-
scriptions center (described above).

In one implementation, only one instance of each feed
tracked update is shown on a user’s news feed, even if the feed
tracked update is published in multiple entities to which the
user is subscribed. In one aspect, there may be delays in
publishing news articles. For example, the delay may be due
to queued up messages for asynchronous entity feed tracked
update persistence. Different feeds may have different delays
(e.g., delay for new feeds, but none of profile and entity
feeds). In another implementation, certain feed tracked
updates regarding a subscribed profile feed or an entity feed
are not shown because the user is not allowed access, e.g., due
to sharing rules (which restrict which users can see which
data). Also, in one implementation, data of the record that has
beenupdated (which includes creation) can be provided in the
feed (e.g., a file or updated value of a feed can be added as a
flash rendition).

Examples are provided below as how it can be determined
which feed items to add to which news feeds. In one imple-
mentation, the addition of items to anews feed is driven by the
following user. For example, the user’s profile can be checked
to determine objects the user is following, and the database
may be queried to determine updates to these objects. In
another implementation, the users and records being followed
drive the addition of items to a news feed. Implementations
can also combine these and other aspects. In one implemen-
tation, a database system can be follower-driven if the number
of subscriptions (users and records the user is following) is
small. For example, since the number subscriptions are small,
then changes to a small number of objects need to be checked
for the follower.

Regarding implementations that are follower-driven, one
implementation can have a routine run for a particular user.
The routine knows the users and records that the user is
following. The routine can poll the database system for new
feed tracked updates and messages about the users and
records that are being followed. In one implementation, the

US 9,178,753 B2

43

polling can be implemented as queries. In one implementa-
tion, the routine can run at least partially (even wholly) on a
user device.

Regarding implementations where a news feed is driven by
the record (or user) being followed, processor 417 can iden-
tify followers of the record after a feed item is added to the
record feed. Processor 417 can retrieve a list of the followers
from the database system. The list can be associated with the
record, and can be stored as a related list or other object that
is a field or child of the record.

In one implementation, profile and record feeds can be
updated immediately with a new feed item after an action is
taken or an event occurs. A news feed can also be updated
immediately. In another implementation, a news feed can be
updated in batch jobs, which can run at periodic times.

B. Dynamically Generating Feeds

Insomeimplementations, a feed generator can generate the
feed items dynamically when a user requests to see a particu-
lar feed, e.g., a profile feed, entity feed, or the user’s news
feed. In one implementation, the most recent feed items (e.g.,
top 50) are generated first. In one aspect, the other feed items
can be generated as a background process, e.g., not synchro-
nously with the request to view the feed. However, since the
background process is likely to complete before a user gets to
the next 50 feed items, the feed generation may appear syn-
chronous. In another aspect, the most recent feed items may
or may not include comments, e.g., that are tied to feed
tracked updates or posts.

In one implementation, the feed generator can query the
appropriate subset of tables shown in FIG. 9A and/or other
tables as necessary, to generate the feed items for display. For
example, the feed generator can query the event history table
910 for the updates that occurred for a particular record. The
1D of the particular record can be matched against the ID of
the record. In one implementation, changes to a whole set of
records can be stored in one table. The feed generator can also
query for status updates, posts, and comments, each of which
can be stored in different parts of a record or in separate
tables, as shown in FIG. 9A. What gets recorded in the entity
event history table (as well as what is displayed) can be
controlled by a feed settings page in setup, which can be
configurable by an administrator and can be the same for the
entire organization, as is described above for custom feeds.

In one implementation, there can be two feed generators.
For example, one generator can generate the record and pro-
file feeds and another generator can generate news feeds. For
the former, the feed generator can query identifiers of the
record or the user profile. For the latter, the news feed gen-
erator can query the subscribed profile feeds and record feeds,
e.g., user subscription table 940. In one implementation, the
feed generator looks at a person’s subscription center to
decide which feeds to query for and return a list of feed items
for the user. The list can be de-duped, e.g., by looking at the
event number and values for the respective table, such as field
name or ID, comment ID, or other information.

C. Adding Information to Feed Tracked Update Tables

FIG. 10 shows a flowchart of an example of a method 1000
for saving information to feed tracking tables, performed in
accordance with some implementations. In one implementa-
tion, some of the blocks may be performed regardless of
whether a specific event or part of an event (e.g., only one field
of an update is being tracked) is being tracked. In various
implementations, a processor or set of processors (hardwired
or programmed) can perform method 1000 and any other
method described herein.

In block 1010, data indicative of an event is received. The
data may have a particular identifier that specifies the event.

10

15

20

25

30

35

40

45

50

55

60

65

44

For example, there may be a particular identifier for a field
update. In another implementation, the transaction may be
investigated for keywords identifying the event (e.g., terms in
a query indicating a close, change field, or create operations).

In block 1020, it is determined whether the event is being
tracked for inclusion into feed tracked update tables. The
determination of what is being tracked can be based on a
tenant’s configuration as described above. In one aspect, the
event has an actor (person performing an event), and an object
of'the event (e.g., record or user profile being changed).

In block 1030, the event is written to an event history table
(e.g., table 910). In one implementation, this feed tracking
operation can be performed in the same transaction that per-
forms a save operation for updating a record. In another
implementation, a transaction includes at least two roundtrip
database operations, with one roundtrip being the database
save (write), and the second database operation being the
saving of the update in the feed tracked update table. In one
implementation, the event history table is chronological. In
another implementation, if user A posts on user B’s profile,
then user A is under the “created by” 913 and user B is under
the object ID 912.

In block 1040, a field change table (e.g., field change table
920) can be updated with an entry having the event identifier
and fields that were changed in the update. In one implemen-
tation, the field change table is a child table of the event
history table. This table can include information about each of
the fields that are changed. For example, for an event that
changes the name and balance for an account record, an entry
can have the event identifier, the old and new name, and the
old and new balance. Alternatively, each field change can be
in a different row with the same event identifier. The field
name or ID can also be included to determine which field the
values are associated.

In block 1050, when the event is a post, a post table (e.g.,
post table 950) can be updated with an entry having the event
identifier and text of the post. In one implementation, the field
change table is a child table of the event history table. In
another implementation, the text can be identified in the trans-
action (e.g., a query command), stripped out, and put into the
entry at the appropriate column. The various tables described
herein can be combined or separated in various ways. For
example, the post table and the field change table may be part
of the same table or distinct tables, or may include overlap-
ping portions of data.

In block 1060, a comment is received for an event and the
comment is added to a comment table (e.g., comment table
930). The comment could be for a post or an update of a
record, from which a feed tracked update can be generated for
display. In one implementation, the text can be identified in
the transaction (e.g., a query command), stripped out, and put
into the entry at the appropriate column.

D. Reading Information from Feed Tracked Update Tables

FIG. 11 shows a flowchart of an example of a method 1100
for reading a feed item as part of generating a feed for display,
performed in accordance with some implementations. In one
implementation, the feed item may be read as part of creating
a feed for a record.

In block 1110, a query is received for an events history
table (e.g., event history table 910) for events related to a
particular record. In one implementation, the query includes
an identifier of the record for which the feed is being
requested. In various implementations, the query may be
initiated from a detail page of the record, a home page of a
user requesting the record feed, or from a listing of different
records (e.g., obtained from a search or from browsing).

US 9,178,753 B2

45

In block 1120, the user’s security level can be checked to
determine if the user can view the record feed. Typically, a
user can view a record feed, if the user can access the record.
This security check can be performed in various ways. In one
implementation, a first table is checked to see if the user has
a classification (e.g., a security level that allows him to view
records of the given type). In another implementation, a sec-
ond table is checked to see if the user is allowed to see the
specific record. The first table can be checked before the
second table, and both tables can be different sections of a
same table. If the user has requested the feed from the detail
page of the record, one implementation can skip the security
level check for the record since the check was already done
when the user requested to view the detail page.

In one implementation, a security check is determined
upon each request to view the record feed. Thus, whether or
not a feed item is displayed to a user is determined based on
access rights, e.g., when the user requests to see a feed of a
record or a news feed of all the objects the user is following.
In this manner, if a user’s security changes, a feed automati-
cally adapts to the user’s security level when it is changed. In
another implementation, a feed can be computed before being
requested and a subsequent security check can be made to
determine whether the person still has access right to view the
feed items. The security (access) check may be at the field
level, as well as at the record level.

Inblock 1130, if the user can access the record, a field level
security table can be checked to determine whether the user
can see particular fields. In one implementation, only those
fields are displayed to the user. Alternatively, a subset of those
the user has access to is displayed. The field level security
check may optionally be performed at the same time and even
using the same operation as the record level check. In addi-
tion, the record type check may also be performed at this time.
If the user can only see certain fields, then any feed items
related to those fields (e.g., as determined from field change
table 920) can be removed from the feed being displayed.

In block 1140, the feed items that the user has access to are
displayed. In one implementation, a predetermined number
(e.g., 20) of feed items are displayed at a time. The method
can display the first 20 feed items that are found to be read-
able, and then determine others while the user is viewing the
first 20. In another implementation, the other feed items are
not determined until the user requests to see them, e.g., by
activating a see more link.

FIG. 12 shows a flowchart of an example of a method 1200
for reading a feed item of a profile feed for display, performed
in accordance with some implementations. In one implemen-
tation, the query includes an identifier of the user profile feed
that is being requested. Certain blocks may be optional, as is
also true for other methods described herein. For example,
security checks may not be performed.

In block 1210, a query is directed to an event history table
(e.g., event history table 910) for events having a first user as
the actor of the event (e.g., creation of an account) or on which
the event occurred (e.g., a post to the user’s profile). In various
implementations, the query may be initiated by a second user
from the user’s profile page, a home page of a user requesting
the profile feed (e.g., from a list of users being followed), or
from a listing of different users (e.g., obtained from a search
or from browsing). Various mechanisms for determining
aspects of events and obtaining information from tables can
be the same across any of the methods described herein.

In block 1220, a security check may also be performed on
whether the second user can see the first user’s profile. In one
implementation any user can see the profile of another user of
the same tenant, and block 1220 is optional.

40

45

55

46

In block 1230, a security (access) check can be performed
for the feed tracked updates based on record types, records,
and/or fields, as well security checks for messages. In one
implementation, only the feed tracked updates related to
records that the person has updated are the ones that need
security check as the feed items about the user are readable by
any user of the same tenant. Users of other tenants are not
navigable, and thus security can be enforced at a tenant level.
In another implementation, messages can be checked for
keywords or links to a record or field that the second user does
not have access.

As users can have different security classifications, it is
important that a user with a low-level security cannot see
changes to records that have been performed by a user with
high-level security. In one implementation, each feed item
can be checked and then the viewable results displayed, but
this can be inefficient. For example, such a security check
may take a long time, and the second user would like to get
some results sooner rather than later. The following blocks
illustrate one implementation of how security might be
checked for a first user that has a lot of feed items, but the
second user cannot see most of them. This implementation
can be used for all situations, but can be effective in the above
situation.

In block 1231, a predetermined number of entries are
retrieved from the event history table (e.g., starting from the
most recent, which may be determined from the event iden-
tifier). The retrieved entries may just be ones that match the
user 1D of the query. In one implementation, entries are
checked to find the entries that are associated with the user
and with a record (i.e. not just posts to the user account). In
another implementation, those entries associated with the
user are allowed to be viewed, e.g., because the second user
can see the profile of the first user as determined in block
1220.

In block 1232, the record identifiers are organized by type
and the type is checked on whether the second user can see the
record types. Other checks such as whether a record was
manually shared (e.g., by the owner) can also be performed.
In one implementation, the queries for the different types can
be done in parallel.

Inblock 1233, if a user can see the record type, then a check
can be performed on the specific record. In one implementa-
tion, if a user can see a record type, then the user can see all of
the records of that type, and so this block can be skipped. In
another implementation, the sharing model can account for
whether a user below the second user (e.g., the second user is
amanager) can see the record. In such an implementation, the
second user may see such a record. In one implementation, if
a user cannot see a specific record, then comments on that
record are also not viewable.

In block 1234, field level sharing rules can be used to
determine whether the second user can see information about
an update or value of certain fields. In one implementation,
messages can be analyzed to determine if reference to a
particular field name is made. If so, then field level security
can be applied to the messages.

Inblock 1280, blocks 1231-1234 are repeated until a stop-
ping criterion is met. In one implementation, the stopping
criteria may be when a maximum number (e.g., 100) of
entries that are viewable have been identified. In another
implementation, the stopping criteria can be that a maximum
number (e.g., 500) of entries from the entity feed tracked
update table have been analyzed, regardless of whether the
entries are viewable or not.

In one implementation, a news feed can be generated as a
combination of the profile feeds and the entity feeds, e.g., as

US 9,178,753 B2

47

described above. In one implementation, a list of records and
user profiles for the queries in blocks 1110 and 1210 can be
obtained form user subscription table 940. In one implemen-
tation, there is a maximum number of objects that can be
followed.

In various implementations, the entity feed table can be
queried for any one or more of the following matching vari-
ables as part of determining items for a feed: CreatedDate,
CreatedByld, CreatedBy.FirstName, CreatedBy.LastName,
Parentld, and Parent.Name. The child tables can also be que-
ried for any one or more of the following matching variables
as part of determining items for a feed: DataType, FieldName,
OldValue, and NewValue. A query can also specify how the
resulting feed items can be sorted for display, e.g., by event
number, date, importance, etc. The query can also include a
number of items to be returned, which can be enforced at the
server.

The two examples provided above can be done periodically
to create the feeds ahead of time or done dynamically at the
time the display of a feed is requested. Such a dynamic
calculation can be computationally intensive for a news feed,
particularly if many users and records are being followed,
although there can be a low demand for storage. Accordingly,
one implementation performs some calculations ahead of
time and stores the results in order to create a news feed.

E. Partial Pre-Computing of Items for a Feed

FIG. 13 shows a flowchart of an example of a method 1300
of storing event information for efficient generation of feed
items to display in a feed, performed in accordance with some
implementations. In various implementations, method 1300
can be performed each time an event is written to the event
history table, or periodically based on some other criteria
(e.g., every minute, after five updates have been made, etc.).

In block 1310, data indicative of an event is received. The
data may be the same and identified in the same way as
described for block 1010. The event may be written to an
event history table (e.g., table 910).

In block 1320, the object(s) associated with the event are
identified. In various implementations, the object may be
identified by according to various criteria, such as the record
being changed, the user changing the record, a user posting a
message, and a user whose profile the message is being posted
to.

In block 1330, the users following the event are deter-
mined. In one implementation, one or more objects that are
associated with the event are used to determine the users
following the event. In one implementation, a subscription
table (e.g., table 940) can be used to find the identified objects.
The entries of the identified objects can contain an identifier
(e.g., user ID 941) of each the users following the object.

In block 1340, the event and the source of the event, e.g., a
record (for a record update) or a posting user (for a user-
generated post) are written to a news feed table along with an
event identifier. In one implementation, such information is
added as a separate entry into the news feed table along with
the event ID. In another implementation, each of the events
for a user is added as a new column for the row of the user. In
yet another implementation, more columns (e.g., columns
from the other tables) can be added.

News feed table 960 shows an example of such a table with
user ID 961 and event ID or pointer 962. The table can be
organized in any manner. One difference from event history
table 910 is that one event can have multiple entries (one for
each subscriber) in the news feed table 960. In one implemen-
tation, all of the entries for a same user are grouped together,
e.g., as shown. The user U819 is shown as following events
E37 and E90, and thus any of the individual feed items result-

10

15

20

25

30

35

40

45

50

55

60

65

48

ing from those events. In another implementation, any new
entries are added at the end of the table. Thus, all of the
followers for a new event can be added as a group. In such an
implementation, the event IDs would generally be grouped
together in the table. Of course, the table can be sorted in any
suitable manner.

In an implementation, if the number of users is small, then
the feed items in one or more of the tables may be written as
part of the same write transaction. In one implementation, the
determination of small depends on the number of updates
performed for the event (e.g., a maximum number of update
operations may be allowed), and if more operations are per-
formed, then the addition of the feed items is performed. In
one aspect, the number of operations can be counted by the
number of rows to be updated, including the rows of the
record (which depends on the update event), and the rows of
the feed tracked update tables, which can depend on the
number of followers. In another implementation, if the num-
ber of users is large, the rest of the feed items can be created
by batch. In one implementation, the feed items are written as
part of a different transaction, i.e., by batch job.

In one implementation, security checks can be performed
before an entry is added to the news feed table 960. In this
manner, security checks can be performed during batch jobs
and may not have to be performed at the time of requesting a
news feed. In one implementation, the event can be analyzed
and if access is not allowed to a feed item of the event, then an
entry is not added. In one aspect, multiple feed items for a
same user may not result from a same event (e.g., by how an
event is defined in table 910), and thus there is no concern
about a user missing a feed item that he/she should be able to
view.

In block 1350, a request for a news feed is received from a
user. In one implementation, the request is obtained when a
user navigates to the user’s home page. In another implemen-
tation, the user selects a table, link, or other page item that
causes the request to be sent.

In block 1360, the news feed table and other tables are
accessed to provide displayable feed items of the news feed.
The news feed can then be displayed. In one implementation,
the news feed table can then be joined with the event history
table to determine the feed items. For example, the news feed
table 960 can be searched for entries with a particular user ID.
These entries can be used to identify event entries in event
history table 910, and the proper information from any child
tables can be retrieved. The feed items (e.g., feed tracked
updates and messages) can then be generated for display.

In one implementation, the most recent feed items (e.g.,
100 most recent) are determined first. The other feed items
may then be determined in a batch process. Thus, the feed
item that a user is most likely to view can come up first, and
the user may not recognize that the other feed items are being
done in batch. In one implementation, the most recent feed
items can be gauged by the event identifiers. In another imple-
mentation, the feed items with a highest importance level can
be displayed first. The highest importance being determined
by one or more criteria, such as, who posted the feed item,
how recently, how related to other feed items, etc.

In one implementation where the user subscription table
940 is used to dynamically create a news feed, the query
would search the subscription table, and then use the object
IDs to search the event history table (one search for each
object the user is following). Thus, the query for the news feed
can be proportional to the number of objects that one was
subscribing to. The news feed table allows the intermediate
block of determining the object IDs to be done at an earlier
stage so that the relevant events are already known. Thus, the

US 9,178,753 B2

49

determination of the feed is no longer proportional to the
number of object being followed.

In some implementations, a news feed table can include a
pointer (as opposed to an event identifier) to the event history
table for each event that is being followed by the user. In this
manner, the event entries can immediately be retrieved with-
out having to perform a search on the event history table.
Security checks can be made at this time, and the text for the
feed tracked updates can be generated.

X. Display of a Feed

Feeds include messages and feed tracked updates and can
show up in many places in an application interface with the
database system. In one implementation, feeds can be scoped
to the context of the page on which they are being displayed.
For example, how a feed tracked update is presented can vary
depending on which page it is being displayed (e.g., in news
feeds, on a detail page of a record, and even based on how the
user ended up at a particular page). In another implementa-
tion, only a finite number of feed items are displayed (e.g.,
50). In one implementation, there can be a limit specifically
on the number of feed tracked updates or messages displayed.
Alternatively, the limit can be applied to particular types of
feed tracked updates or messages. For example, only the most
recent changes (e.g., 5 most recent) for a field may be dis-
played. Also, the number of fields for which changes are
displayed can also be limited. Such limits can also be placed
on profile feeds and news feeds. In one implementation, feed
items may also be subject to certain filtering criteria before
being displayed, e.g., as described below.

A. Sharing Rules for Feeds

As mentioned above, a user may not be allowed to see all of
the records in the database, and not even all of the records of
the organization to which the user belongs. A user can also be
restricted from viewing certain fields of a record that the user
is otherwise authorized to view. Accordingly, certain imple-
mentations use access rules (also called sharing rules and
field-level security FLS) to ensure that a user does not view a
feed tracked update or message that the user is not authorized
to see. A feed of a record can be subject to the same access
rules as the parent record.

In one implementation, access rules can be used to prevent
subscription to a record that the user cannot see. In one
implementation, a user can see a record, but only some of the
fields. In such instances, only items about fields that the user
can access may be displayed. In another implementation,
sharing rules and FLS are applied before a feed item is being
added to a feed. In another implementation, sharing rules and
FLS are applied after a feed item has been added and when the
feed is being displayed. When a restriction of display is men-
tioned, the enforcement of access rules may occur at any stage
before display.

In some implementations, the access rules can be enforced
when a query is provided to a record or a user’s profile to
obtain feed items for a news feed of a user. The access rules
can be checked and cross-references with the feed items that
are in the feed. Then, the query can only return feed items for
which the user has access.

In other implementations, the access rules can be enforced
when a user selects a specific profile feed or record feed. For
example, when a user arrives on a home page (or selects a tab
to see the record feed), the database system can check to see
which feed items the user can see. In such an implementation,
each feed item can be associated with metadata that identifies
which field the feed item is about. Thus, in one implementa-
tion, a feed tracked update is not visible unless the associated
record and/or field are visible to the user.

10

15

20

25

30

35

40

45

50

55

60

65

50

In one example, when a user accesses a feed of a record, an
access check can be performed to identify whether the user
can access the object type of the record. In one implementa-
tion, users are assigned a profile type, and the profile type is
cross-referenced (e.g., by checking a table) to determine
whether the profile type of the user can see the object type of
the record.

In some implementations, access to specific records can be
checked, e.g., after it has been determined that the user can
access the record type. Rules can be used to determine the
records viewable by a user. Such rules can determine the
viewable records as a combination of those viewable by pro-
file type, viewable due to a profile hierarchy (e.g., a boss can
view records of profile types lower in the hierarchy), and
viewable by manual sharing (e.g., as may be done by an owner
of'arecord). In one implementation, the records viewable by
a user can be determined beforehand and stored in a table. In
one implementation, the table can be cross-referenced by user
(or profile type of a user) to provide a list of the records that
the user can see, and the list can be searched to determine if
the record at issue is among the list. In another implementa-
tion, the table can be cross-referenced by record to determine
alist of the profile types that can access the record, and the list
can be searched to find out if the requesting user is in the list.
In another implementation, the records viewable by auser can
be determined dynamically at the time of the access check,
e.g., by applying rules to data (such as user profile and hier-
archy information) obtained from querying one or more
tables.

In other implementations, checks can be made as to
whether a user has access to certain fields of a record, e.g.,
after it has been determined that the user can access the
record. In one aspect, the access check on fields can be per-
formed on results already obtained from the database, to filter
out fields that the user cannot see. In one implementation, the
fields associated with retrieved feed items are determined,
and these fields are cross-referenced with an access table that
contains the fields accessible by the user (e.g., using the
profile type of the user). Such an access table could also be a
negative access table by specifying fields that the user cannot
see, as can other access tables mentioned herein. In one
implementation, the field level access table is stored in cache
at a server.

In one implementation, a user can see the same fields
across all records of a certain type (e.g., as long as the user can
see the record). In one implementation, there is a field level
access table for each object type. The access table can be
cross-referenced by user (e.g., via profile type) or field. For
example, a field can be identified along with the profile types
that can see the field, and it can be determined whether the
user’s profile type is listed. In another example, the user can
be found and the fields to which the user has access can be
obtained. In another implementation, the accessible fields
could be specified for each record.

Regarding profile feeds and news feeds, a first user may
perform an action on a record, and a feed tracked update may
be generated and added to the first user’s profile feed. A
second user who is allowed to follow the first user may not
have access rights to the record. Thus, the feed tracked update
can be excluded from a news feed of the second user, or when
the second user views the first user’s profile feed directly. In
one implementation, if a user is already on the detail page,
then another access check (at least at the record level) may
optionally notbe performed since a check was already done in
order to view the detail page.

In some implementations, for profile feeds and news feeds,
the feed items can be organized by object type. I'T can then be

US 9,178,753 B2

51

determined whether the requesting user can access to those
object types. Other access checks can be done independently
or in conjunction with these access checks, as is described
above.

B. API Implementation

Various implementations can implement the access rules in
various ways. In one implementation, all recent feed items (or
more generally events) are retrieved from a feed that is ready
for display (e.g., after a feed generator performs formatting)
or a table. Then, bulk sharing checks can be applied on the
retrieved items. The viewable feed items of the most recent set
can then be displayed.

In another implementation regarding a profile feed, for
non-VAD (view all data) users, i.e. users who can see every-
thing, certain functions can be overridden. In one implemen-
tation, a FROM clause in a query can be overridden to be a
pipelined function, e.g., with different parts of the query
being operated on at the same time, but with different opera-
tions of a pipeline. This pipeline function can be given a row
limit and the maximum number of sharing checks to run. It
can loop, selecting the next batch of rows, run sharing checks
against them in bulk, and pipe back any IDs which are acces-
sible. In one aspect, in nearly all cases, the user feed can
contain accessible IDs so the sharing checks can pass on the
first loop. However, it is possible the sharing may have
changed such that this user’s access is greatly reduced. In one
worst case, implementations can run sharing checks on up to
the maximum number of sharing check rows (e.g., a default
500) and then terminate the function with the IDs which
passed so far, possibly zero. Such an example includes a low
level person viewing profile feed of CEO.

In some implementations, if the user has a small number of
subscriptions (e.g., <25), then implementations can first run
sharing checks on those IDs and then drive the main query
from those accessible IDs, as opposed to a semi-join against
the subscription and running sharing checks on the resulting
rows. In other implementations, FLS is enforced by building
up a TABLE CAST of the accessible field IDs from the
cached values. A main query can then join against this table to
filter only accessible fields.

XI. Filtering and Searching Feeds

It can be possible that a user subscribes to many users and
records, which can cause a user’s news feed to be very long
and include many feed items. In such instances, it can be
difficult for the user to read every feed item, and thus some
important or interesting feed items may not be read. In some
implementations, filters may be used to determine which feed
items are added to a feed or displayed in the feed, even though
a user may be authorized to see more than what is displayed.
Section VILE also provides a description of filtering based on
criteria.

In one implementation, an “interestingness” filter can
function as a module for controlling/recommending which
feed tracked updates make it to the news feed when the
number of items that a user subscribes to is large. In one such
implementation, a user can specify a filter, which is applied to
auser’s news feed or to record and profile feeds that the user
requests. Different filters can be used for each. For example,
processing can be done on the news feed to figure out which
feed tracked updates are the most relevant to the user. One
implementation can use an importance weight and level/rank-
ing, as described herein. Other implementations can include a
user specifying keywords for a message and specitying which
records or users are most important.

In one implementation, a filter can be used that only allows
certain feed items to be added to a feed and/or to be displayed
as part of a feed. A filter can be used such that the removal or

10

15

20

25

30

35

40

45

50

55

60

65

52

non-addition of certain feed items automatically occur for
any new feed items after the filter criteria are entered. The
filter criteria can also be added retroactively. The criteria of
such a filter can be applied via a query mechanism as part of
adding a feed item to a table or displaying a feed, as described
in sections above. In various implementations, a user can
directly write a query or create the query through a graphical
user interface.

FIG. 14 shows a flowchart of an example of a method 1400
for creating a custom feed for users of a database system using
filtering criteria, performed in accordance with some imple-
mentations. Any of the following blocks can be performed
wholly or partially with the database system, and in particular
by one or more processor of the database system.

In block 1410, one or more criteria specifying which feed
items are to be displayed to a first user are received from a
tenant. In one implementation, the criteria specifies which
items to add to the custom feed. For example, the criteria
could specify to only include feed items for certain fields of a
record, messages including certain keywords, and other cri-
teria mentioned herein. In another implementation, the crite-
ria specifies which items to remove from the custom feed. For
example, the criteria could specify not to include feed items
about certain fields or including certain keywords.

In block 1420, the database system identifies feed items of
one or more selected objects that match the criteria. The feed
items can be stored in the database, e.g., in one or more of the
tables of FIG. 9A. In one implementation, the one or more
selected objects are the objects that the first user is following.
In another implementation, the one or more selected objects is
a single record whose record feed the first user is requesting.

In block 1430, the feed items that match the criteria are
displayed to the first user in the custom feed. The generation
of text for a feed tracked update can occur after the identifi-
cation of the feed items (e.g., data for a field change) and
before the display of the final version of the feed item.

In one implementation, the criteria are received before a
feed item is created. In another implementation, the criteria
are received from the first user. In one aspect, the criteria may
only used for determining feeds to display to the first user. In
yet another implementation, the criteria are received from a
first tenant and applies to all of the users of the first tenant.
Also, in an implementation where a plurality of criteria are
specified, the criteria may be satisfied for a feed item if one
criterion is satisfied.

Some implementations can provide mechanisms to search
for feed items of interest. For example, the feed items can be
searched by keyword, e.g., as entered by a user. As another
example, a tab (or other selection device) can show feed items
about or from a particular user. In one implementation, only
messages (or even just comments) from a particular user can
be selected.

In another implementation, a user can enter search criteria
so that the feed items currently displayed are searched and a
new list of matching feed items is displayed. A search box can
be used to enter keywords. Picklists, menus, or other mecha-
nisms can be used to select search criteria. In yet another
implementation, feed comments are text-indexed and search-
able. Feed comments accessibility and visibility can apply on
the search operation too.

In one implementation, when a user performs a search of
feeds, there can be an implicit filter of the user (e.g., by user
ID). This can restrict the search to only the news feed of the
user, and thus to only record feeds and profile feeds that the
user is subscribed. In another implementation, searches can
also be done across feeds of users and records that are not
being subscribed.

US 9,178,753 B2

53

Besides searching for feed items that match a criteria, one
also could search for a particular feed item. However, in one
implementation, a user cannot directly query a feed item or
feed comment. In such an implementation, a user can query to
obtain a particular profile or record feed, and then navigate to
the feed item (e.g., as child of the parent feed). In another
implementation, the relationship from a feed to its parent
entity (e.g., a record or user profile) is uni-directional. That is
a user can navigate from the feed to the parent but not vice
versa.

In one implementation, a user can directly query the child
tables, e.g., comment table 930. Thus, a user could search for
comments only that user has made, or comments that contain
certain words. In another implementation, a user can search
for a profile feed of only one user. In yet another implemen-
tation, a user can search for profile feeds of multiple users
(e.g., by specitying multiple user names or IDs), which can be
combined into a single feed.

XII. Maintaining Records for Follower’s Feeds

If every feed item is stored and maintained on a follower’s
feed or even in the profile and/or record feeds, the amount of
data to be stored could be massive, enough to cause storage
issues in the system. In one implementation, the N (e.g., 50)
most recent feed items for each feed are kept. However, there
can be a need to keep certain older feed items. Thus, imple-
mentations can remove certain feed items, while keeping
others. In other implementations, old feed tracked updates
may be archived in a data store separate from where recent
feed items are stored.

In some implementations, feeds are purged by a routine
(also called a reaper) that can remove items deemed not
worthy to keep (e.g., old items). Any underlying data struc-
tures from which feed items are created can also be purged. In
one implementation, the reaper can remove certain items
when new items are added (e.g., after every Sth item added).
As another example, feed items may be deleted synchro-
nously during the save operation itself. However, this may
slow down each save operation. In one implementation, how-
ever, this may be better than incurring a larger cost when the
items are removed at longer intervals. In another implemen-
tation, the reaper can run periodically as a batch process. Such
routines can ensure that a table size does not become too
large. In one aspect, a reaper routine can keep the event
history table relatively small so the sharing checks are not
extremely expensive.

In various implementations, the reaper can maintain a
minimum number (e.g., 50 or 100) of feed items per record,
maintain a minimum number of records per user (e.g., per
user ID), and not deleting feed items (or entire records),
which have comments against it. Such implementations can
ensure that the detail page and profile page have sufficient
data to display in a feed. Note that the sharing checks for feed
queries can cut down the number of records further for users
with less access. Thus, the number of records finally dis-
played for specific users can be significantly less than a mini-
mum number for a specific profile or record feed. In one
implementation, a reaper deletes data that is older than a
specified time (e.g., 6 months or a year).

In one implementation, the reaper can perform the deletion
of feed items (purging) as a batch up deletion. This can avoid
deletion of large number of records that may lead to locking
issues. In another implementation, the reaper can be run often
so that the table does not become difficult to manage (e.g.,
size-wise). In this way the reaper can work on a limited set of
records. In one implementation, the reaper may have logic
that deletes certain items (e.g., by an identification) from
tables (e.g., those in FIG. 9A), or sections of the tables.

10

15

20

25

30

35

40

45

50

55

60

65

54

XIII. External User Access to an Online Social Network of
an Organization

In some implementations, users outside of an organization
in which an online social network such as Chatter® is imple-
mented are granted limited access to social network data of
the organization. For instance, such external users can log
into the social network to view exposed organizational data
and exchange messages with some ofthe organization’s inter-
nal users. Conceptually, internal users, such as the organiza-
tion’s members, employees, students, etc. can be viewed as
first class citizens within the organization, in that they have
access to all or a large part of the organization’s social net-
work data. Following this model, external users can be
viewed as second class citizens of the organization, having
limited access to a smaller portion of the same collection of
social network data.

In some implementations, external users can be invited to
join a particular group of the organization, and thus access at
least some of the group’s data. For example, an external group
member can be authorized to post messages to the group feed,
have access to files uploaded to and maintained by the group,
and send/receive messages to/from internal group members.
However, such external users can be restricted from viewing
or otherwise accessing other group data and any organiza-
tional data outside of the particular group(s) of which the
external users are members. Thus, the online social network
can have a security model with restrictions in place to prevent
an external user from following other users and/or seeing
more detailed contact information than the names and, in
some cases, pictures of internal users who are not members of
the particular group.

In some examples, as described in greater detail below, an
external user, such as a customer of the organization, can be
invited to join a group of the organization in the context of the
organization’s online social network. When the external user
is authorized as a group member, the external user can be
provided with the capability of logging into the organiza-
tion’s social network to view a presentation of the group page
tailored to external users. In some instances, this external user
presentation of the group page is a partial view of the group
page otherwise viewable by internal users. For instance, a
GUI including the external user presentation of the group
page can show a photo, group name, description, and other
data. However, other group data otherwise displayed in the
internal user presentation of the group page, such as a full list
of group members, group member photos, group member
contact information, and customers of the group, is not
included in the external user presentation. In another
example, the internal user presentation includes internal
group member posts to the group feed, while the external user
presentation blocks the posts and any other information
updates submitted by internal group members from being
displayed.

FIG. 15 shows a flowchart of an example of a method 1500
for providing access to an online social network, performed in
accordance with some implementations. In block 1504, a
requesting user sends a request message to one or more com-
puting devices performing method 1500. The request mes-
sage requests access to social network data of the online
social network. In some implementations, the online social
network is specific to an organization having one or more
internal users, such as employees or students of the organi-
zation. Internal users of such an organization are often indi-
viduals authorized to log in and have full access to online
social network data available in the social network imple-
mented in the organization. In some implementations, the
online social network of method 1500 also has one or more

US 9,178,753 B2

55

external users, referring to any individuals or groups outside
of'the organization such as non-employee customers or vend-
ers, non-students, members of a different organization, and/or
anyone not explicitly recognized as an internal user. Various
types of organizations can implement the online social net-
work.

In one example of method 1500, an app server 288 in the
on-demand database service environment 200 of FIGS. 2A
and 2B canreceive the request message of block 1504 from an
external user operating a user system 12 as shown in FIGS.
1A and 1B. In other instances, the request message is received
from a proxy on behalf of another user or information source.
Any of the servers described above with reference to FIG. 2B
or other computing devices described herein can be config-
ured to receive and process request messages in accordance
with method 1500. In block 1504, any such request messages
received by one or more computing devices performing
method 1500 can be received as signals over network 14 of
FIGS. 1A and 1B, that is, with any request message transmit-
ted from one of the user systems 12.

When a request message is received in block 1504 from a
requesting user, the computing device or devices receiving
the message can proceed to identify the requesting user in
block 1508. In some instances, the user sending the request
message is an external user of the organization, and identified
as such in block 1508. Various entities can serve as external
users, depending on the desired implementation. For
instance, when an organization is in the form of a corporation,
external users of the organization could be contractors, con-
sultants, academic individuals, and other various entities out-
side of the organization in which the online social network is
implemented. For example, an organization such as sales-
force.com could have external users in the form of graduate
students working as contractors or on a part-time basis on a
specific research project for salesforce.com. In this example,
the external user is not a full-time employee of the organiza-
tion, but is working with the organization on a limited basis.
Inone example of block 1508, identifying a requesting user as
an external user can involve looking up a User ID of the
requesting user in a database storing a list of external user IDs.
Other techniques for identifying external users are described
in greater detail below.

Inblock 1512, following identification of a requesting user
inblock 1508, the one or more computing devices performing
method 1500 determines whether the requesting user has an
authorized status, that is, whether the requesting user is
authorized to access the online social network in some limited
capacity. Again, the determination of block 1512 can be made
by performing a database lookup in a table which stores a list
of authorized external users of the organization and online
social network. In some implementations, the table also
stores tailored parameters defining specific permissions and
restrictions to online social network data for the identified
external user. Thus, different external users can have different
permissions and restrictions defining individualized access to
the online social network data. The databases accessed in
block 1508 and 1512, by way of example, can be imple-
mented in any of the various storage mediums described
herein. For instance, tenant data storage 22 and/or system data
storage 24 of FIGS. 1A and 1B can store lists of external users
and authorize external users and associated security param-
eters. Any of the various databases and/or memory devices
described herein can serve as the storage mediums accessed
in blocks 1508 and 1512.

In block 1516, when the requesting external user is not
identified as being authorized in block 1512, the requesting
user is not granted access to any social network data of the

20

40

45

56

organization in block 1516. Returning to block 1512, when
the requesting user is authorized, the method 1500 proceeds
to block 1520 in which the authorized requesting user is
provided access to only a portion of the data of the online
social network. In block 1520, in one example, providing
access to only a portion of the social network data includes
one or more servers transmitting the portion over network 14
to a user system 12 of FIGS. 1A and 1B. For instance, a
portion of social network data can be received by the user
system and displayed using a web browser program operating
on user system 12 to output a graphical presentation of the
portion of social network data on the display of user system
12 ina GUL

The portion of the social network data to which the autho-
rized requesting user is provided access in block 1520 can
include various social network information and objects, as
described herein. For instance, the larger collection of social
network data can include any of various types of information
feeds, files, and records such as cases, accounts, opportuni-
ties, leads, and contacts, as described above. In some
instances, the portion of the social network data provided in
block 1520 includes a relatively smaller collection of one or
more types of such information, such as a subset of one or
more feed items of a news feed and a subset of the records
stored in the online social network. Other various combina-
tions of selected portions of online social network data can be
provided in block 1520. In another example, the social net-
work data includes one or more user profiles. For instance, the
portion of social network data provided in block 1520 can be
in the form of one or more selected user profiles or certain
fields of information in a particular user profile.

FIG. 16 shows a flowchart of an example of a method 1600
for providing access to an online social network, performed in
accordance with some implementations. Method 1600 is
described in relation to examples of GUIs shown in FIGS.
19-21 capable of being generated and displayed on a display
device in accordance with some implementations.

FIGS. 19A-C show examples of group pages in the form of
GUIs configured to be accessible by different users of an
organization, according to some implementations. For
instance, internal users of the group can be internal group
members, while authorized external users can be external
group members granted permission to view certain group
data, as explained in greater detail below. The group page
1900A of FIG. 19A has a group feed 1904 including a pub-
lisher component 1908 as well as a number of information
updates presented as feed items 1912¢-19124. For instance, a
user has commented on John Park’s information update in
feed item 1912d. The group page of FIG. 19A includes a
group photo 1916 and a description 1920 of the group. Any
notices are presented in details region 1924, and a members
region 1928 identifies internal group members by thumbnail
images. A group files region 1932 shows a list of files
uploaded by any of various group members and accessible
through the group page.

In FIG. 19A, the group page 1900A is in the form of a
presentation to internal users, in this example, internal group
members of the organization, accessing the online social net-
work. While some of the social network data in the form of
photo 1916, details 1924, description 1920, group feed 1904,
members 1928, and files 1932 are private, meaning the data is
accessible only to internal group members, all of such data is
displayed in the internal user presentation of GUI 1900A. In
some instances, described in greater detail below, such private
data is omitted from a presentation of the group page to

US 9,178,753 B2

57

authorized external users, e.g., external group members, such
that only exposed or publicly accessible data is display in the
external user presentation.

Returning to FIG. 16, in block 1604, a request message can
be received from a requesting user to access social network
data, for instance, in the form of group data. When the
requesting user is an internal user, e.g., an internal group
member, the presentation of FIG. 19A is generated and dis-
played on a display device operated by the internal group
member. In block 1608, when the requesting user is identified
as an external user, the one or more servers responding to the
request can check whether the requesting external user has
been authorized as an external group member to access and
view part or all of the group data, in block 1612. Techniques
for authorizing an external user as an external group member
of'one or more groups of the organization, such as the “Project
Millennium” group of FIG. 19A, are described in greater
detail below.

When the requesting external user is not authorized,
method 1600 ends in block 1616. Returning to block 1612,
when the requesting external user is identified as an external
group member, exposed data of the group is provided to the
external group member in block 1620. For instance, in some
implementations, an external group member identified in
block 1612 may only be granted limited permission to
exchange messages, such as emails, with internal group
members while otherwise being prohibited from accessing or
viewing any of the group data.

Inblock 1620, any exposed group data is provided to auser
system operated by the external group member in an external
user presentation for display on a display device of the user
system. For example, in FIG. 19B, a group page 1900B is
generated and displayed on a display device of a user system
operated by Eddie ExternalUser. Thus, in this example, the
exposed group data of FIG. 19A is provided in an external
user presentation of FIG. 19B, while any group data desig-
nated as private is restricted from being viewed by Eddie
ExternalUser. In this example, the group photo 1916 is
shown, as well as the details 1924. However, certain feed
items of feed 1904 of FIG. 19A, such as item 19124 of FIG.
19A, have been omitted from filtered information feed 1906
of FIG. 19B. For example, the file added by John Park in feed
item 1912d may be intended only for internal group members.
The same is true for feed item 1912¢ of FIG. 19 A, in that it has
also been omitted from the presentation in group page 1900B.
Other publicly accessible feed items are exposed in informa-
tion feed 1906 of FIG. 19B. In the example of FIG. 19B,
Eddie ExternalUser is also prevented from viewing members
1928 of FIG. 19A.

Thus, when comparing and contrasting FIGS. 19A and
19B, page 1900A provides a presentation of a full set of group
data, including the name of the group, “Project Millennium”,
the group photo 1916, the description 1920, the full group
feed 1904 including both private and exposed feed items,
group details 1924, identifications of other members 1928,
and files 1932. The partial presentation of page 1900B
includes a subset of this data, in particular, only the data
designated as exposed to external group members. Thus, as
mentioned above, the feed 1906 of FIG. 19B includes a subset
of conversations and other feed items of feed 1904. In one
example, feed 1904 of FIG. 19A includes posts and conver-
sations including any external group members that internal
group members can view and comment on. However, feed
1906 displayed in page 1900B blocks out certain posts and
conversations with other external group members, so a par-
ticular external group member can only see a subset of post-
ings from internal group members. In this way, one external

10

15

20

25

30

35

40

45

50

55

60

65

58

group member can be blocked from accessing and conversing
with other external members of the same group. To this end,
in some implementations, when one or more servers are per-
forming the method 1600, any post or other information
update received from any user in relation to a particular group
results in the servers first checking whether the user submit-
ting the post or information update is an internal user, such as
an employee of the organization, or an external user, such as
a contractor or customer interacting with the group. Fields in
one or more tables as described above with reference to FIG.
9A can store data identifying the type of user submitting the
information update.

In some implementations, an external group member has
the capacity to interact with other internal and external group
members in one or more groups of the online social network.
Returning to the example of FIGS. 19A and 19B, an external
group member such as Eddie ExternalUser can be permitted
to send messages and various information updates to other
users in Eddie’s group(s) of the online social network, in
block 1624 of FIG. 16. In FIG. 19C, showing an internal user
presentation of an updated group page 1900C, Eddie Exter-
nalUser has submitted a post 1940 with an attached file,
“Super Bowl Assets”, to the group feed 1904, in one example
of block 1628 of FIG. 16. In this example, internal group
members as well as external group members can view Eddie’s
post 1940 in their respective presentations of the group page.

In some implementations, when a request message is
received from one or more internal group members, both the
private data and exposed data is provided in an internal user
presentation, as shown in the pages of FIGS. 19A and 19C.
These pages can be displayed on a suitable display device
operated by the requesting internal group member. Also, in
the example of FIG. 19C, any external group members such as
Eddie are identified as guests 1944 in the internal user pre-
sentation of page 1900C.

FIG. 17 shows a flowchart of an example of a method 1700
for authorizing an external user with a group of an organiza-
tion. In some implementations, groups of an organization can
have different states. For instance, a group designated as
“public” means that any internal user can join the group,
access private and exposed group data, and otherwise view
information updates for the group. Another state of the group
is “private”, in which an internal user can join the group by
permission only. For instance, to join a private group, an
internal user sends a message requesting permission to join
the group, and a group leader or system administrator grants
permission to the internal user to join the group before the
requesting user is able to access group data. For instance, a
group leader can review the requesting user’s credentials and
other background information before granting such permis-
sion.

In some implementations, another state for a group is
“external”, in which an external user can be invited to join a
group as an external group member and have limited access to
group data, as described herein. In some implementations, an
external group is one type of a private group. That is, the
external user is granted permission to view group data fol-
lowing a similar requesting and granting of permission from
a group leader or other user.

FIG. 20A shows an example of'a GUI 2000A for authoriz-
ing an external user with a group of an organization. In some
implementations, GUI 2000A is presented on a display
device of a group leader who has the capability to invite and
authorize external users as external group members. In this
example, the group leader is able to create or edit a group by
designating a group name in field 2004, an owner of the group
in field 2008, and a description of the group in field 2012.

US 9,178,753 B2

59

Thus, returning to FIG. 17, in block 1704, the group leader
has the capability to define parameters of the group. These
parameters include name, owner, and description, as men-
tioned above, as well as the type of the group in “Group
Access” region 2016 of GUI 2000A. In this example, the
group leader can select the “external group” option, which
designates one example of a private group, as described
above, so it is possible to invite external users to join the
group. The various parameters of the group in fields 2004-
2012 and region 2016 can be saved by the group leader using
save button 2020. The group leader can return to GUI 2000A
to later modity and customize the various group parameters
by clicking on the various fields and selections described
above. In some implementations, the GUI 2000A includes
additional fields and selections to define various other param-
eters of a group.

The parameters of a group can be customized to provide
different permissions to users, depending on their status as an
internal user or authorized external user. For instance, in some
implementations, an internal user can be granted permission
to view user profiles of all group members, while authorized
external users have limited access to such data. For example,
an authorized external user could be permitted to view only
the names and photos of other group members or otherwise be
restricted from viewing all of the user profile data of the
various members of the group. In some instances, an autho-
rized external user is only granted permission to view the
names of the internal group members, that is, while prevent-
ing the display of any other external group members or other
data of the internal group members. In another example, an
authorized external user is prevented from using a publisher
1908, as shown in FIG. 19A, while internal group members
are allowed to use the publisher 1908. In another example, the
parameters defined for a group can specify that the names of
the other group members 1928 of FIG. 19A are limited to
users who are in the same group or groups as the authorized
external user. By contrast, an internal user can be granted
permission to view the names of all group members, as well as
other internal users and external users of the organization. In
other instances, internal users can be provided with the capa-
bility of accessing and submitting any of various files of the
group, while authorized external users have limited capability
to only receive files emailed from other users, that is, while
being prevented from viewing any files uploaded to the group
as indicated in the list of group files 1932.

In FIG. 17, in block 1708, after group parameters are
defined as described above, an external user can be identified
and invited to join the group. Returning to FIG. 19A, by way
of example, when a group leader clicks on an “Invite New
People” link 1934, a pop-up window 2030 is generated and
displayed in a GUI 2000B, as shown in FIG. 20B. In pop-up
window 2030, one or more external users can be identified in
“To” field 2034 by an appropriate identifier such as the des-
ignated external user’s email address. An invitation message
can be entered in “Message” field 2038 with appropriate
content. In field 2034, the email addresses of any desired
recipients of the invitation can be manually entered or
retrieved from a storage medium such as a database table
identifying a list of customers or consultants to the organiza-
tion. When the user clicks a send button 2042, the content of
message field 2038 is sent as an invitation email to the email
address(es) specified in field 2034. In some other implemen-
tations, the generation and sending of invitations can be auto-
mated through an API. For instance, when a contact is created
for an external user, a trigger can be coded to automatically
generate and send the invitation to the external user’s email
address.

30

40

45

55

60

When the invitation email is received by the designated
external user, in this example, the email includes an embed-
ded link such as a URL 2050 as shown in the simplified
representation of the email in the designated user’s inbox, in
FIG. 20C. In FIG. 20C, the content of message field 2038 of
GUI 20008 is displayed in conjunction with the link 2050,
which the user can select to join the group. In addition, a
selectable “Accept” button 2054 is linked with URL 2050, so
the receiving user can alternatively click on button 2054 to
accept the invitation and join the group, in block 1712 of FIG.
17. When the external user who receives the email clicks on
link 2050 or button 2054, a registration process can be per-
formed, in block 17186, to establish an external user’s User 1D,
password, and, in some instances, a user profile for the exter-
nal user.

In FIG. 17, in block 1720, after the user has accepted the
email invitation and registered with the group in blocks 1712
and 1716, the external user is established as an authorized
member of the group identified by the link the user clicked on
in block 1712. Thus, in instances when the user has created a
user profile, such a profile can be accessible to other members
of'the group. For instance, in FIG. 21A, showing an example
of'aninternal user presentation of a group page 2100A, autho-
rized external users such as external group members estab-
lished in block 1720 can be identified as guests 2104, with a
thumbnail photo or other identifying information displayed
for viewing by other members of the group.

In block 1724, when an external user is established as an
authorized participant of the group, in some implementations,
an external license is granted to the authorized external user.
Such an external license defines permissions for access of
group data by the authorized external user. For instance, the
external license can specify that part or all ofthe various types
of group data mentioned above can be hidden from the autho-
rized external user. As a result of the different access permis-
sions of internal users and external users, different presenta-
tions of the same group page can be generated and displayed
depending on the type of user requesting access to the page.
When any user requests access to a group page, an internal
user presentation, such as page 2100A, or an external user
presentation of the group page, such as page 1900B, can be
generated based on the license of the user requesting the page.

In some implementations, in the online social network,
there are different licenses defined and assigned to different
types of users. In general, the license defines the access per-
missions and restraints, as well as permissible actions, with
respect to group data. In some implementations, there is a
pricing model corresponding to the licensing scheme. For
instance, different licenses providing different access permis-
sions can have different associated prices. In one example, an
internal user in the form of a sales agent, who is an employee
of the organization, has a customer relations management
(CRM) license, which allows the sales agent to identify,
access, modify and otherwise use cases. An external license
assigned to any authorized external users restricts such users
from viewing or otherwise accessing cases, in this example,
although the authorized external user is granted permission to
access a group feed with feed items submitted by at least
internal users of the group. In some examples, while the
external license allows the external user to view a group feed
of'a group of which the authorized external user is a member,
the license restricts this external user from viewing group data
of any other groups of which the user is not a member. In this
paradigm, the external license essentially filters the larger set
of group data, for instance, including cases, leads, opportu-
nities, people, groups, and files, down to a subset of such data,

US 9,178,753 B2

61

for instance, where only a portion of the people, groups, and
files of the larger set are displayed for access by the autho-
rized external user.

Some of the implementations of method 1700 and other
methods described herein are applicable to short-term
projects, for instance, having confined time periods and/or
ascertainable deadlines. For instance, an external user autho-
rized according to one or more of the methods described
above can have limited capability of communicating and
collaborating with other members of the group to work on the
project before the deadline. When the deadline is reached, it
can be desirable to end the collaboration. At such time, the
one or more computing devices configured to perform
method 1700 can change the status of an authorized external
user to unauthorized. Thus, an external user who completes
the methods of authorization and registration as described
above can have only a temporary authorized status, in some
implementations, dependent upon the status of a project as
being in progress or terminated. Thus, the group of an orga-
nization can be project-based. For example, a team of internal
users can have a three-month time period to complete a
project by collaborating with people outside of the organiza-
tion. Thus, external users can be authorized for only such a
three-month period, in this example, to have limited access to
group data, to the group feed, and otherwise send messages
and communicate with internal group members of the online
social network.

Following the same methodologies as described above, the
same external user can be invited to join more than one group
of the same organization. Thus, another group leader, e.g., a
different sales agent of the same organization, can invite the
same external user to that sales agent’s group, after the exter-
nal user has already joined a different group of the organiza-
tion. For instance, the external user can be identified in a
database table within the organization for viewing by internal
group leaders.

FIG. 18 shows a flowchart of an example of a method 1800
for providing limited access to group data in an external user
presentation of a group page, performed in accordance with
some implementations. In block 1802, an authorized external
user as described above logs into group A, of which the
authorized external user is a member. As shown in FIG. 21B,
in block 1804 of FIG. 18, only limited portions of group data
are displayed to the authorized external user of block 1802.
For example, while tab 2114 provides “Chatter”, in this
example, represented by information feed 2118, only a por-
tion of all of the feed items of the group feed of group A are
displayed to this external user. In particular, feed 2118 only
displays information updates from groups of which the exter-
nal user is an authorized member. Thus, in this example, since
Eddie ExternalUser is an external group member of both the
“Project Millennium” and “Website Open Improvements”
groups, Eddie ExternalUser is able to view information
updates posted to these various groups under his Chatter tab
2114. These include an information updated submitted by
Eddie ExternalUser himself and resulting comments in feed
item 2122.

Thus, in FIG. 21B, the authorized external user can view
Chatter tab 2114 as well as other tabs including Profile tab
2126, People tab 2130, Groups tab 2134, and Files tab 2138,
in block 1808. When the authorized external user viewing
page 2100B clicks on any of the respective tabs, a different
presentation is generated to display the appropriately limited
portion of information. In some implementations, the set of
tabs 2114 and 2126-2138 are a subset of a larger group of tabs
displayed to internal group users.

30

40

45

55

62

In block 1812, by way of example, when Eddie Exter-
nalUser clicks on groups tab 2134, this authorized external
user is requesting to view groups of the organization. While
there may be a larger set of groups, a presentation is generated
to display in a suitable GUI only the groups of the organiza-
tion of which the authorized external user is a member. Thus,
in this example, an organization may have ten or more groups,
only two of which the external user is authorized to view, in
block 1816.

Thus, one of the security dimensions of the techniques
described herein is to show only a list of groups of which the
external user is an authorized member rather than a compre-
hensive list of all groups of the organization. By contrast, an
internal user of the organization, such as an employee, can
click on a groups tab of the internal user presentation and see
all of the various groups of the organization, in some imple-
mentations. Thus, in some instances, while an external user
can only view groups of which the external user is a member,
the internal user can view various private and public groups.
Such permissions and restrictions can be desirable to provide
internal user access to proprietary and/or confidential infor-
mation of the organization, while restricting external user
access to such information.

Returning to block 1816 of FIG. 18, when an authorized
external user clicks a tab, the one or more computing devices
performing the method 1800 identifies the click as associated
with the User ID of the particular authorized external user.
Using the user ID, a group membership table stored in a
database can be accessed. In some implementations, by way
of example, such a group membership table can include one
or more rows for each user, indexed by User ID, where each
row identifies a particular group of which the external user is
a member. For example, when all of the rows matching the
particular User ID are retrieved, in block 1820, a list of the
identified group names from the group membership table can
bedisplayed in a list. The list can be presented as part of a user
interface, for instance, when the user clicks on the groups tab
2134 of FIG. 21B. When the list is displayed, in block 1820,
the external user is then provided with the capability to click
on one of the group names in the list to access group data of
the requested group, for instance, in the form ofa group page,
in block 1824.

In block 1828, an external user presentation of the group
data of the requested group is generated. As described above,
a partial view of the group data, for instance, with data com-
ponents designated as being exposed, are gathered. Graphical
representations of such components can be provided in a
suitable external user presentation, as illustrated in the Fig-
ures. In one example of block 1828, when a user clicks on a
particular group, the click is identified as being associated
with the requesting external user’s User 1D, and a group table
storing the group data of the group in a suitable database or
other storage medium is accessed. In this example, rows of
the table storing components of group data can then be
accessed. For instance, a column in the table can be an exter-
nal user flag indicating which rows of data are exposed for
external users. Using such a scheme, rows having the external
user flag can be retrieved for presentation in a suitable user
interface. In block 1832, the retrieved components can be
assembled and provided as an external user presentation, for
instance, in a GUI, for display on a display device. Thus, the
requesting external user can view the external user presenta-
tion.

Returning to FIG. 21B, when a user clicks on the People tab
2130, in some implementations, the resulting presentation in
an appropriate GUI shows a subset of the people of the orga-
nization. For example, clicking on the people tab can result in

US 9,178,753 B2

63

the display of only the internal members of the particular
groups of which the authorized external user is a member. In
some other implementations, only a designated group mem-
ber, such as the group leader, is identified when clicking on
tab 2130. In some other implementations, even when clicking
on the people tab 2130, the external user is prevented from
viewing any of the people of the organization, including all
internal and external group members. Thus, different permis-
sions can be defined according to the desired implementation.

In one example, it is desirable to prevent an authorized
external user from logging into the online social network of
an organization and accessing a directory of people, particu-
larly internal users, participating in the online social network.
For instance, it can be desirable to prevent a customer or
potential business partner from accessing and viewing the
names, titles, phone numbers, email addresses, and other
contact information of employees of the company. Thus, in
some implementations, no one is identified to an authorized
external user when clicking on People tab 2130. In another
implementation, clicking on tab 2130 can result in a presen-
tation of a list of names of members of the group or other
groups within an organization, while email addresses, phone
numbers, and other contact data of such users are not dis-
played.

In some implementations, the list of people identified when
clicking on tab 2130 only includes users who are members of
the same group(s) as the authorized external user. For
example, if external user A is in an organization’s customer
support group and the organization’s annual user conference
group, clicking on tab 2130 will allow the external user to
view any internal users who are members of either group. The
group members in the respective groups can be mutually
exclusive, or there can be some overlap, depending on the
particular application. In this example, when external user A
clicks on the People tab 2130, external user A sees the union
of the two sets of group members. In another example, when
external user A is in more than one group, tab 2130 only
displays names of users who are in all of the groups of which
external user a is a member.

In some implementations, particularly when authorized
external users are permitted to view the names of internal
users outside of a particular group of which the external user
is a member, the internal users can set parameters in their user
profile to expose only selected personal data, which the par-
ticular user is comfortable allowing external users to view.

Returning to FIG. 21B, when the authorized external user
clicks on the Files tab 2138, a subset of group files or portion
of data within a given file is displayed in a suitable presenta-
tion. In one example, an authorized external user is only
provided with the capability to view and access files of a
group of which the external viewer is a member, such as
Group Files 1932 of FIG. 19C. Alternatively, or in addition to
the partial access of file data provided by clicking on Files tab
2138 in FIG. 21B, a group leader or other group member can
share files with external users privately, for instance, by send-
ing an email with the file attached on a file-by-file basis.

FIGS. 22-24 show flowcharts of examples of methods for
providing alerts in an online social network, according to
some implementations, and are generally described with ref-
erence to FIGS. 25-27.

FIG. 25 shows an example of a publisher component dis-
played in a group page, according to some implementations.
In FIG. 25, the publisher component 1908 of the “Project
Millennium” group page 1900C as described above is shown.
The publisher component 1908 includes a data entry field
2504 for entering and submitting user input data as an infor-
mation update to the group feed 1904 and includes several

10

15

20

25

30

35

40

45

50

55

60

65

64

selections. The selections include an attach file selection 2508
and an attach link selection 2512. A user can use an input
device such as a mouse to move a graphical pointer 2516 to
appropriate regions of publisher component 1908 to click on
and select any of the various fields and components. For
example, a user can move the pointer 2516 over data entry
field 2504 and click in the field 2504 to type text and enter
various characters and symbols. When the user is satisfied
with the data entered in field 2504, the user can move pointer
2516 over a share button 2520. Clicking on the share button
2520 causes the data entered in field 2504 to be submitted as
a post to one or more information feeds, such as the Project
Millennium group feed. Clicking on the attach file selection
2508 allows the user to attach a desired file to the post before
submitting the post and the attached file(s) using share button
2520. By the same token, moving pointer 2516 over link
selection 2512 allows the user to select or enter a hyperlink or
link to any data objects in the online social network or other
networks for submission with the post to one or more infor-
mation feeds.

FIG. 26 shows an example of a pop-up window 2600 for
generating a private message in a GUI, according to some
implementations. Such a private message can be sent between
or among users in the online social network. In some imple-
mentations, such messages are considered private because the
messages are not submitted for presentation in any informa-
tion feeds for possible viewing by users other than the desig-
nated recipients. For example, the private message window
2600 can be generated as an overlay over group page 1900C
in a user interface when a user clicks on a “send private
message” button 1954 shown in FIG. 19C. In FIG. 26, private
message window 2600 includes a “To” data entry field 2604,
in which a user can input or otherwise select specific users as
recipients of the private message. The user creating the pri-
vate message can enter an appropriate subject in “Subject”
field 2608. The content of the private message can be entered
in data entry field 2612. When the user is satisfied with the
data entered in fields 2604, 2608, and 2612, the user can move
pointer 2516 over send button 2616. Clicking the send button
2616 causes the private message created in window 2600 to
be sent over one or more networks to the designated recipients
in field 2604 without any indication of the private message or
contents of the private message being shared in information
feeds.

FIG. 27 shows an example of a post in an information feed
as displayed in a GUI, according to some implementations. In
FIG. 27, an updated state of Eddie ExternalUser’s post 1940,
as shown in FIG. 19C, is shown. In FIG. 27, a user viewing
post 1940 in feed 1904 of FIG. 19C or another feed has moved
pointer 2516 over a comment selection 2704. Clicking on
comment selection 2704 using an input device such as a
mouse causes a comment field 2708 to be generated within
post 2700 as displayed in the information feed. As generally
described above, the user can then enter desired text and
symbols to create commentary in field 2708 regarding Eddie
ExternalUser’s original post. When the user is satisfied with
the content of field 2708, the user can move pointer 2516 to a
share button 2712. Clicking on share button 2712 causes the
datain comment field 2708 to be submitted for presentation in
group feed 1904 and any other information feeds in which
post 1940 was originally presented, in similar format as
shown in FI1G. 27 for viewing by other users having access to
such feeds.

FIG. 22 shows a flowchart of an example of a method 2200
for providing alerts in an online social network, according to
some implementations. In FIG. 22, in block 2204, one or
more computing devices performing method 2200 receives

US 9,178,753 B2

65

an indication of an action associated with providing data to
the online social network. Various data can be provided in
block 2204 as can various actions associated with providing
such data as described in greater detail in the examples herein.
In one example of method 2200, an app server 288 in the
on-demand database service environment 200 of FIGS. 2A
and 2B can receive the indication of block 2204 in the form of
a network communication from an internal or external user
operating a user system 12 as shown in FIGS. 1A and 1B. In
other instances, the indication is received from a proxy on
behalf of another user or information source. Any of the
servers described above with reference to FIG. 2B or other
computing devices described herein can be configured to
receive and process indications of actions and otherwise per-
form the blocks of method 2200. In block 2204, any indica-
tions of actions received by one or more computing devices
performing method 2200 can be received as signals over
network 14 of FIGS. 1A and 1B, that is, with any such
indications transmitted from one of the user systems 12. Inan
alternative example, the receipt of an indication of an action
in block 2204 is received at the same computing device or
devices operated by a user. In such alternative examples,
additional processing of the blocks of method 2200 can also
be performed at the same computing device or devices.

Various actions can be identified and indicated in block
2204. Often, such actions are caused to occur by a user inter-
acting with a user interface or component of a user interface
as described in the examples herein. In other examples, such
actions occur or are generated by one or more computing
devices operating to cause such actions to occur. Examples of
actions, which can be indicated in block 2204, include selec-
tion of a publisher component in a user interface. For
example, in FIGS. 19C and 25, a user viewing the presenta-
tion of group page 1900C or a portion of page 1900C such as
feed 1904 can move pointer 1958 in FI1G. 19C or pointer 2516
in FIG. 25 over publisher component 1908. The publisher
component can be selected by the user clicking on any region
within component 1908 such as data entry field 2504 or attach
file selection 2508. The selection of other data entry fields in
other components and regions of a group page or other pre-
sentation in a user interface as described herein can also serve
as an action in block 2204. For instance, clicking on message
field 2612 of private message window 2600 in FIG. 26 or
clicking on comment field 2708 of post 2700 in FIG. 27 can
serve as an action. Other examples of actions to be indicated
in block 2204 include activation of any designated selections
in a user interface, such as clicking on a “comment” or “like”
selection in post 1940 as displayed in group page 1900C in
FIG. 19C, the attach file selection 2508 and attach link selec-
tion 2512 of FIG. 25, or the comment selection 2704 of FIG.
27. Other various selections that a user can click on or other-
wise select as disclosed herein can be designated.

Another example of an action to be indicated in block 2204
includes a pointer hovering over any designated selection,
component, or region in an appropriate user interface. For
example, in FIG. 19C, the positioning of pointer 1958 over
any region of group feed 1904 can be indicated in block 2204.
Hovering pointer 1958 over certain types of information
updates in feed 1904 can cause the indication to be generated
in block 2204. In another example, the action is hovering the
pointer 1958 over any guests 1944 identified in the presenta-
tion of page 1900C. In some examples, hovering pointer over
publisher component 1908 of FIG. 25, private message win-
dow 2600 of FIG. 26, post 2700 of FIG. 27, or any designated
selections or regions such as data entry fields within such
displayed elements in a user interface can serve as actions to
be indicated in block 2204. In other examples, the action

10

15

20

25

30

35

40

45

50

55

60

65

66

indicated in block 2204 is the receipt of input data at a com-
puting device such as a user system. For example, data
entered in field 2504 of publisher component 1908, message
field 2612 of private message window 2600, or comment field
2708 of post 2700 can serve as the action to be indicated in
block 2204. In some instances, only the entering of desig-
nated keywords or other specified data in such fields are of
interest as actions to be indicated in block 2204. For instance,
the mention of the name, “Eddie,” or the name of other exter-
nal users in FIG. 25 can be actions to be indicated. Various
characters, symbols, words, and phrases can be designated,
such that only the entering of data mentioning such informa-
tion, for instance, in fields 2504, 2612, and 2708 can be
actions to be indicated in block 2204.

Other actions that can be indicated in block 2204 include
the attachment of files or links, for example, using selections
2508 and 2512 of FIG. 25. In some instances, the actions of
interest are more granular, such that only files having a des-
ignated type, a designated name, or a designated content are
identified as actions in block 2204. For instance, using pub-
lisher component 1928, method 2200 can be tailored such that
only the attachment of files having certain keywords or
phrases in the title of the file cause the indication to be gen-
erated in block 2204. In other examples, the content of the file
to be attached is screened to identify certain subjects or data
of interest.

In some instances, activation of a private message selec-
tion, such as the “send private message” button 1954 of F1G.
19C, is the action indicated in block 2204. That is, in some
instances, as soon as a user clicks on button 1954, this selec-
tion is indicated in block 2204 of FIG. 22. In other instances,
the entering of names of particular recipients in To field 2604
or the input of certain keywords in Subject field 2608 of FIG.
26 are the actions to be indicated in block 2204. Such can be
beneficial in instances where a private message may be sent to
many people, one or more of whom is an external user. Thus,
when an internal user hits a “Reply All” button in response to
a private message, the internal user can receive an immediate
notification indicating that one of the recipients of the reply
private message is external. Thus, the internal user can be
automatically notified even if the internal user did not check
the names of all of the recipients of the reply message in To
field 2604.

Other examples of actions to be indicated in block 2204
include the activation of public message selections in various
user interfaces as disclosed herein. For instance, the share
button 2520 of publisher component 1908 in FIG. 25 and the
share button 2712 of post 2700 in FIG. 27 are examples of
public message selections. In one example, when the user
hovers a pointer 2516 over the share button, it can be assumed
that the data entered by the user is about to be shared publicly,
that is, to any viewers of the information feeds receiving such
data. Thus, in some examples, the hovering of a pointer over
the button can be of interest as an action indicated in block
2204.

Another example of a desired action to be indicated in
block 2204 is the receipt of input data including one or more
designated symbols often in conjunction with one or more
identifications of recipients. For instance, a directed public
message can be created in some online social networks using
the @mention feature. In some online social networks, users
who view an @mention in an information feed can discover a
particular person and often link to his or her profile when the
person’s name appears in an @mention in the feed. For
example, in FIG. 27, Paul ExternalUser is identified with an
@mention in field 2708. That is, the user generating com-
ments in field 2708 has specifically identified Paul Exter-

US 9,178,753 B2

67

nalUser after the @ symbol. In this way, when the comments
of field 2708 are presented in an information feed, any user
viewing the presented comments will see Paul explicitly iden-
tified in the content of the comments. Other characters or
symbols can serve as alternatives to the @ symbol, depending
on the desired implementation. In some instances, the @men-
tion can identify an external user in the context of a conver-
sation or group which the external user does not have permis-
sion to access or otherwise participate in. Thus, when a user is
creating a comment such as the commentary in field 2708 of
FIG. 27, it can be desirable to notify the user that the person
identified by the @ symbol is external. Thus, the mention of
designated names of persons after entering the @ symbol can
be actions to be indicated in block 2204.

In FIG. 22, when the indication of the action of block 2204
is received by the one or more computing devices performing
method 2200, the method proceeds to block 2208, in which
the one or more computing devices are configured to identify
one or more groups associated with the indication of the
action. Techniques for identifying such groups are described
in greater detail below. When such groups are identified, in
block 2212, the one or more computing devices are config-
ured to determine whether the identified group includes any
external users. Techniques for identifying such external
groups are described in greater detail below. In block 2212,
when the group does not include any external users, the
method terminates in block 2216. Returning to block 2212,
when the identified group includes one or more external
users, the method proceeds to block 2220, in which an
instruction to display an alert notification is provided. In some
examples, one or more computing devices such as app server
288 in the on-demand database service environment of FIGS.
2A and 2B sends the instruction to display the alert notifica-
tion to a user system 12 of FIGS. 1A and 1B, when the user
system 12 is where the action of block 2204 occurred. In other
instances, block 2220 of method 2200 can be performed at
such a user system, in cases where the user system is perform-
ing part or all of method 2200. Thus, the instruction to display
the alert notification of block 2220 can be generated at a
server or a user system, depending on the particular imple-
mentation.

Various implementations of the alert notification are pos-
sible. The alert notification can take various forms, as shown
in FIGS. 25-27. For example, in FIG. 25, an alert notification
2524 is generated and displayed in accordance with method
2200 or method 2300, described below, as a graphical overlay
partially covering a portion of publisher component 1908.
The alert notification includes a warning message 2526 with
appropriate text, “External users may see this data.” The
content of alert notification 2524 is surrounded by a graphical
border 2528 in the shape of a box, in this example.

When an alert notification is generated, such as alert noti-
fication 2524 of FIG. 25, a region of the user interface in
which the alert notification is displayed is caused to change
state in the display of information. That is, in the example of
FIG. 25, the publisher component 1908 has a first state in
which the alert notification 2524 is not displayed and a second
state when the alert notification 2524 is displayed, for
example, responsive to the determinations of method 2200.

Other examples of alert notifications are possible, as shown
in FIGS. 26 and 27. In FIG. 26, in the context of a private
message, an alert notification 2620 can be generated and
displayed, for example, performing method 2400 described
in greater detail below. In this example, the alert notification
2620 includes content 2622 surrounded by a cloud-shaped
border 2624. As with the displayed component of FIG. 25, the
private message window 2600 experiences a change of state

40

45

55

68

in the visual presentation of window 2600. That is, private
message window 2600 has a first state in which the alert
notification 2620 is not displayed and a second state in which
the alert notification 2620 is generated and displayed, for
example, performing method 2400 described below. Another
example of an alert notification is in FIG. 27, in which an alert
notification 2716 is generated having content 2720 sur-
rounded by a cloud-shaped border 2724. Again, as with FIGS.
25 and 26, the displayed post 2700 experiences a change of
state in visual presentation from a first state in which alert
notification 2716 is not displayed to a second state in which
alert notification 2716 is displayed. The alert notification
2716 can be generated by performing method 2200 or method
2300, by way of example.

Various changes of state in the presentation of the alert
notification in various contexts such as FIGS. 25-27 are pos-
sible. While the display of alert notifications 2524, 2620, and
2716 represent a change of state of a visual presentation of
one or more components to a state in which the alert notifi-
cation overlays at least a portion of such components, other
changes of state are possible. For example, the alert notifica-
tion can be in the form of a color change or highlight in a
designated field or region of the user interface. For instance,
in FIG. 25, the color of text entered in data entry field 2504
can change color from black to red. In another example, a
color of the displayed publisher component 1908 can change,
or publisher component 1908 can be highlighted or have a
graphical border generated and displayed around publisher
component 1908 as one form of the alert notification. In other
examples, the display of publisher component 1908 in FIG.
25 changes state back and forth between the display and
non-display of alert notification 2524, to provide a flashing
on/off presentation of alert notification 2524. In another
example, other flashing indicators such as warning symbols
and flashing red lights can be displayed in a region in which
publisher component 1908 or another component is displayed
in auser interface. These same examples of various formats of
alert notifications are equally applicable to FIGS. 26 and 27.
The color of the interior or border of message field 2612 can
change color or be highlighted as one form of alert notifica-
tion. Other fields of private message window 2600 such as
fields 2604 or 2608 or the data entered in those fields can be
made to change color or be highlighted as one form of alert
notification. The same general examples are applicable to
comment field 2708 and other regions of feed item 2700 in
FIG. 27. In another example, the send button 2616 or share
buttons 2520 and 2712 can flash, be highlighted, or change
color as one form of the alert notification.

When an alert notification is generated and displayed in a
user interface, for instance, according to an instruction as
described above in block 2220 in FIG. 22, in some examples,
the alert notification is caused to be displayed in a designated
region of a user interface. For example, in FIG. 25, the alert
notification 2524 is positioned such that the notification is in
close spatial proximity to both data entry field 2504 and share
button 2520. In some alternative examples, the alert notifica-
tion 2524 can be positioned between field 2504 and button
2520. In these various examples, it can be desirable to posi-
tion the alert notification in such a manner so a user’s eyes are
more likely to see the notification when entering data in field
2504 or moving pointer 2516 between regions such as field
2504 and button 2520. In the example of FIG. 25, the location
of alert notification 2524 adjacent to share button 2520 and
immediately below field 2504 at least partially overlaying the
publisher component 1908 is intentional so the pointer 2516
and/or the user’s eyes see notification 2524 after entering
commentary in field 2504 but before clicking on share button

US 9,178,753 B2

69

2520. The same is true for the spatial positioning of alert
notification 2716 in F1G. 27 in relation to comment field 2708
and share button 2712. In FIG. 26, the alert notification 2620
is positioned so that it overlays a significant amount of space
of comment field 2612. In this way, the user’s cursor will pass
under alert notification 2620 as the user continues to enter
commentary, with the intent of forcing the user’s eyes to see
notification 2620 before pressing send button 2616.

In other implementations, other designated regions of a
user interface, such as a designated alerts region or other
notification region can be configured to receive and display
alert notifications, for example, responsive to instructions in
block 2220 of method 2200.

FIG. 23 shows a flowchart of an example of a method 2300
for providing alerts in an online social network, according to
some implementations. In block 2304, an indication of an
action associated with providing data to the online social
network is received at a computing device, as generally
described above with reference to block 2204 of method
2200. In some instances, when the indication is received in
block 2304, the one or more computing devices performing
method 2300 are configured to identify a user or users causing
or otherwise associated with the action. In particular, in some
instances it can be desirable to identify whether the user
inputting data is an internal user or external user. For example,
in some implementations, alert notifications as described
herein are only displayed to internal users before sharing
information with a group that may include external users. In
other implementations, such alert notifications are desirably
displayed only to external users, while in some other imple-
mentations, such alert notifications are generated and dis-
played to both internal and external users. The identification
ofauser or users associated with the action of block 2304 can
be achieved by checking a user ID or user profile identified at
the user system at which the action occurs.

In block 2306, the one or more computing devices per-
forming method 2300 are configured to identify one or more
information feeds in which provided data will be presented.
For instance, a user operating a user system to cause the
various actions described above can be viewing any of various
pages. Various types of information feeds such as news feeds,
records feeds, user profile feeds, and group feeds can be
displayed in the context of a user interface and designated by
a user as an intended destination for data provided in block
2304. In some instances, a system can be configured so that
group feeds receive messages and other information updates
indirectly when the user submits such information to another
type of feed. Thus, in block 2306, any and all such feeds can
be identified in some implementations.

In block 2308, the one or more computing devices per-
forming method 2300 are configured to determine whether
any of the identified information feeds of block 2306 are
group feeds or are otherwise associated with a group. For
example, while the information feed or feeds indicated as
intended destinations for a submitted post or comment in
block 2306 are not group feeds, in some implementations, the
system can be configured so that one or more group feeds
receive posts or comments indirectly from other information
feeds, such as a user profile feed, anews feed, or arecord feed.
In block 2308, the identification of any group feeds or feeds
indirectly providing data to a group can be performed by
checking group IDs and linked feeds stored in a suitable
database table. If the identified feeds are not group feeds or
otherwise associated with a group, the method 2300 termi-
nates in block 2310.

If one or more group feeds are identified in block 2308, the
method proceeds to block 2312, in which a group flag or other

10

15

20

25

30

35

40

45

50

55

60

65

70

parameter of any identified groups can be checked to deter-
mine whether the group has one or more external users. For
example, a database table can be maintained with group infor-
mation for particular groups including a column with a flag
indicating whether the group is configured to have external
users. Thus, in some implementations, by checking a group
parameter, it is irrelevant who particular members of the
group are.

If any of the groups identified in block 2308 do not have
any external users, for instance, by checking an external
group flag in block 2312, the method stops in block 2316.
Returning to block 2312, when any of the groups do include
an external user, the one or more computing devices perform-
ing method 2300 are configured to determine a format or
content of the alert notification to be displayed. Thus, in some
instances, the format or content of the particular alert notifi-
cation can be dependent on and governed by particulars ofthe
action, the indication ofthe action, and/or the data provided in
block 2304. Returning to the various examples of actions
described above with respect to FIGS. 19C and 25-27, differ-
ent alert notifications can be generated or selected depending
on the type of action, such as selection of a publisher com-
ponent, selection of a data entry field, activation of a desig-
nated selection, a pointer hovering over a designated selec-
tion, component, or region, the receipt of input data, such as
designated keywords or other data, the attachment of a file,
such as a file having a designated type, a designated name, or
designated content, the activation of a private message selec-
tion, the activation of a public message selection, the receipt
of input data including a designated symbol and/or identifi-
cation of a designated recipient user, and other actions.

In one example, a list of a variety of different formats and
contents of alert notifications is stored on a storage medium,
and the particular action of block 2304 determines which alert
notification is selected for display in a particular context. For
instance, in FIGS. 25-27 the selection of the shape of a border
2528, 2624, or 2724 of the alert notifications can be selected
according to the action, indication of the action, or data input
from a particular user. In the example of FIG. 25, the name
“Eddie” entered in data field 2504 is a keyword identifying an
external user. Thus, the act of inputting the name “Eddie” in
field 2504 can cause alert notification 2524 to be generated
and displayed in a particular form. In FIG. 26, whether or not
the keyword “Eddie” entered in comment field 2612 is iden-
tified, the mention of “ABC News” in subject field 2608
triggers the selection, generation, and display of alert notifi-
cation content 2622, “Don’t share ABC News deal with exter-
nal users.” In this case, the content 2622 of the alert notifica-
tion as well as the generation and display of the alert
notification can be dependent on the content or type of data
entered in any of various fields 2604, 2608, and/or 2612. In
FIG. 27, the entering of the @ symbol in comment field 2708
immediately followed by a user’s name can cause the one or
more computing devices performing method 2300 to search
and identify Paul ExternalUser as an external user who will
receive the commentary entered in field 2708 as a directed
public message, as described above. Thus, the entering of the
@ symbol followed by the name of the external user can cause
alert notification 2716 to have customized content 2720
including the word, “Paul”.

Various characters, symbols, words, phrases, and catego-
ries of data provided in any of the various fields and compo-
nents of FIGS. 25-27 can be used as criteria to select, gener-
ate, and display particular customized alert notification
formats and content to users, depending on the particular
implementation. Customizable alert notifications can enforce
certain rules about which users and groups of users should be

US 9,178,753 B2

71

permitted to view or otherwise access certain messages and
other input data generated by users in the online social net-
work. Such rules can enforce the confidentiality of certain
topics, such as the ABC News deal of F1G. 26 or other various
sensitive or proprietary topics which should not be shared
with external users. The content of various alert notifications
can be customized to warn users to not post about certain
designated keywords, subjects, or other topics. That is, in one
example, such as alert notification 2620 of FIG. 26, the mes-
sage can be customized to warn the user to not post about the
designated subject, keyword, or topic. Various keywords,
subjects, and topics can be identified in the system so that any
input data received from a user is automatically filtered to
identify such terms to trigger an appropriate alert notification.
The same automatic identification filtering of input data can
be applied to the names and content of attached files, using the
same principles. In some implementations, only when the
designated keywords, subjects, or topics are identified is an
appropriate alert notification generated and displayed.

Returning to FIG. 23, when an appropriate alert notifica-
tion format and/or content is selected or generated in block
2320, method 2300 proceeds to block 2322 in which an
instruction to display the alert notification at the computing
device is provided, as generally described above with respect
to block 2220. In some implementations, the display of an
alert notification can be temporary. For instance, in block
2324, the one or more computing devices performing method
2300 can monitor whether the action or indication of the
action of block 2304 has stopped or been suspended for some
designated period of time. For instance, if no user input has
been received for two minutes or some other designated time
since the action first occurred, such can be an indication that
an alert notification is no longer necessary. In some imple-
mentations, when the action has not stopped or has not been
suspended, block 2324 repeats. When the action has stopped
or has been suspended for the designated time period, in block
2328, an instruction is provided to stop displaying the alert
notification at the computing device.

FIG. 24 shows a flowchart of an example of a method 2400
for providing alerts in an online social network, according to
some implementations. In FIG. 24, in block 2404, an indica-
tion of an action associated with providing data to a recipient
user of the online social network is received at a computing
device, as generally described above in blocks 2204 and
2304. Here, in the context of method 2400, the input data
identifies a designated recipient user of the online social
network. For example, a private message generated in private
message window 2600 of FIG. 26 is to be provided to one or
more specified recipients in To field 2604. In another
example, the @mention of Paul ExternalUser in comment
field 2708 of post 2700 of FIG. 27 indicates that Paul is the
intended recipient user of the commentary entered in field
2708.

In block 2408, it is determined whether any intended
recipient users identified in block 2404, for instance, by
name, user ID, or login, such as Eddie ExternalUser or Paul
ExternalUser of FIGS. 26 and 27, are external users. In some
examples, various attributes of the identified intended recipi-
ents can be checked to make the determination of block 2408.
A suitable list of user IDs with a column providing a bit to
indicate whether the particular user is internal or external can
be maintained in a database accessible by the one or more
computing devices performing method 2400. In some other
examples, such an attribute can be stored in the user profile
and checked when a user name, ID, or login is input in an
appropriate field, such as the data entry fields of FIGS. 26 and

10

15

20

25

30

35

40

45

50

55

60

65

72
27. For example, in FIG. 26, there can be an on-the-fly check
of'whether any of the identified recipients in the To field 2604
are external customers.

Inblock 2408, if no identified intended recipients are exter-
nal users, the method 2400 stops in block 2416. Returning to
block 2408, if one or more recipients are identified as external
users, the method proceeds to block 2420, in which an
instruction to display an appropriate alert notification is pro-
vided at the computing device. For example, a customized
alert notification 2716 in FIG. 27 can be generated and dis-
played, warning that the particular intended recipient, Paul,
identified in comment field 2708 is an external user.

The specific details of the specific aspects of implementa-
tions disclosed herein may be combined in any suitable man-
ner without departing from the spirit and scope of the dis-
closed implementations. However, other implementations
may be directed to specific implementations relating to each
individual aspect, or specific combinations of these indi-
vidual aspects.

While the disclosed examples are often described herein
with reference to an implementation in which an on-demand
database service environment is implemented in a system
having an application server providing a front end for an
on-demand database service capable of supporting multiple
tenants, the present implementations are not limited to multi-
tenant databases nor deployment on application servers.
Implementations may be practiced using other database
architectures, i.e., ORACLE®, DB2® by IBM and the like
without departing from the scope of the implementations
claimed.

It should be understood that some of the disclosed imple-
mentations can be embodied in the form of control logic using
hardware and/or using computer software in a modular or
integrated manner. Other ways and/or methods are possible
using hardware and a combination of hardware and software.

Any of the software components or functions described in
this application may be implemented as software code to be
executed by a processor using any suitable computer lan-
guage such as, for example, Java, C++ or Perl using, for
example, conventional or object-oriented techniques. The
software code may be stored as a series of instructions or
commands on a computer-readable medium for storage and/
or transmission, suitable media include random access
memory (RAM), a read only memory (ROM), a magnetic
medium such as a hard-drive or a floppy disk, or an optical
medium such as a compact disk (CD) or DVD (digital versa-
tile disk), flash memory, and the like. The computer-readable
medium may be any combination of such storage or trans-
mission devices. Computer-readable media encoded with the
software/program code may be packaged with a compatible
device or provided separately from other devices (e.g., via
Internet download). Any such computer-readable medium
may reside on or within a single computing device or an entire
computer system, and may be among other computer-read-
able media within a system or network. A computer system,
or other computing device, may include a monitor, printer, or
other suitable display for providing any of the results men-
tioned herein to a user.

While various implementations have been described
herein, it should be understood that they have been presented
by way of example only, and not limitation. Thus, the breadth
and scope of the present application should not be limited by
any of the implementations described herein, but should be
defined only in accordance with the following and later-sub-
mitted claims and their equivalents.

US 9,178,753 B2

73

What is claimed is:
1. A computer implemented method for providing access to
an online social network, the method comprising:
receiving a request message from a requesting user to
access social network data communicated in a group of
internal users of the online social network, the online
social network being specific to an organization having
the internal users as members of the organization, and
the social network data including exposed data and pri-
vate data, the exposed data relating to a project in which
internal users collaborate with authorized external users;
accessing, by a computing device, one or more database
tables stored on one or more storage mediums in com-
munication with the computing device to:
identify the requesting user as an external user who is not a
member of the organization,
determine that the requesting user has an authorized status
by veritying that the requesting user is on a stored list of
authorized external users,
identify one or more security parameters stored on the
database that are associated with the authorized external
user, the security parameters defining one or more
restrictions to access of the social network data, wherein
different authorized external users are associated with
different security parameters;
providing access to only a portion of the social network
datato the authorized requesting user in accordance with
the one or more security parameters identified by access-
ing the one or more database tables, wherein the portion
of'the social network data includes the exposed data and
excludes the private data;
receiving a message from the authorized external user;
providing the message as an information update for inclu-
sion in an information feed, the information update
capable of being stored on one or more storage medi-
ums; and
changing the status of the requesting user from authorized
to unauthorized after expiration of a time period,
wherein an unauthorized requesting user is denied
access to the portion of the social network data.
2. The method of claim 1 wherein determining that the
requesting user has an authorized status includes:
identifying the requesting user as an external member of
one or more groups of internal users of the online social
network.
3. The method of claim 2, wherein providing access to the
portion of the social network data includes:
providing access to one or more pages of the one or more
groups of internal users.
4. The method of claim 1 wherein providing access to the
portion of the social network data includes:
providing the portion of the social network data in an
external user presentation capable of being displayed on
a display device.
5. The method of claim 1 wherein providing access to the
portion of the social network data includes:
providing access to the portion of the social network data to
a user system associated with the requesting user over a
data network.
6. The method of claim 1 further comprising:
identifying the portion of the social network data as acces-
sible based on a license of the requesting user.
7. The method of claim 1 further comprising:
receiving a request message from one of the internal users;
and
providing access to the social network data to the one of the
internal users.

20

25

30

35

40

45

55

60

65

74

8. The method of claim 7, wherein providing access to the
social network data to the one of the internal users includes:
providing the social network data in an internal user pre-
sentation capable of being displayed on a display device.

9. The method of claim 1 further comprising:

changing the status of the requesting user from authorized

to unauthorized after occurrence of an event.

10. The method of claim 1, wherein the social network data
includes an information feed.

11. The method of claim 1, wherein the social network data
includes one or more files.

12. The method of claim 1, wherein the social network data
includes one or more records.

13. The method of claim 12, wherein the one or more
records includes one or more of: a case, an account, an oppor-
tunity, a lead, and a contact.

14. The method of claim 1, wherein the social network data
includes one or more user profiles.

15. The method of claim 1, wherein the social network data
includes group data communicated in the group of internal
users, and the portion of the social network data includes one
or more of: a group photo, a group name, a group description,
a group feed, a group information update, a group record, a
group file, and a group user name.

16. The method of claim 1, wherein the online social net-
work is specific to a plurality of organizations.

17. An apparatus for providing access to an online social
network, the apparatus comprising:

one or more processors;

a non-transitory computer readable medium storing a plu-

rality of instructions, which
when executed, cause the one or more processors to:
receive a request message from a requesting user to access
social network data communicated in a group of internal
users of the online social network, the online social
network being specific to an organization having the
internal users as members of the organization, and the
social network data including exposed data and private
data, the exposed data relating to a project in which
internal users collaborate with authorized external users;

access one or more database tables stored on one or more
storage mediums in communication with the computing
device to:

identify the requesting user as an external user who is not a

member of the organization,

determine that the requesting user has an authorized status

by veritying that the requesting user is on a stored list of
authorized external users,

identify one or more security parameters stored on the

database that are associated with the authorized request-
ing user, the security parameters defining one or more
restrictions to access of the social network data, wherein
different authorized external users are associated with
different security parameters;

provide access to only a portion of the social network data

to the authorized requesting user in accordance with the
one or more security parameters identified by accessing
the one or more database tables, wherein the portion of
the social network data includes the exposed data and
excludes the private data;

receive a message from the authorized external user;

provide the message as an information update for inclusion

in an information feed, the information update capable

of being stored on one or more storage mediums; and
change the status of the requesting user from authorized to

unauthorized after expiration of a time period, wherein

US 9,178,753 B2

75

an unauthorized requesting user is denied access to the
portion of the social network data.

18. The apparatus of claim 17, wherein determining that
the requesting user has an authorized status includes:

identifying the requesting user as an external member of

one or more groups of internal users of the online social
network.

19. The apparatus of claim 18, wherein providing access to
the portion of the social network data includes:

providing access to one or more pages of the one or more

groups of internal users.

20. The apparatus of claim 17, wherein providing access to
the portion of the social network data includes:

providing the portion of the social network data in an

external user presentation capable of being displayed on
a display device.
21. A computer program device comprising computer-
readable program code to be executed by one or more pro-
cessors when retrieved from a non-transitory computer-read-
able medium, the program code including instructions to:
receive a request message from a requesting user to access
social network data communicated in a group of internal
users of the online social network, the online social
network being specific to an organization having the
internal users as members of the organization, and the
social network data including exposed data and private
data, the exposed data relating to a project in which
internal users collaborate with authorized external users;

access one or more database tables stored on one or more
storage mediums in communication with the computing
device to:

identify the requesting user as an external user who is not a

member of the organization,

determine that the requesting user has an authorized status

by veritying that the requesting user is on a stored list of
authorized external users,

identify one or more security parameters stored on the

database that are associated with the authorized request-

10

15

20

25

30

35

76

ing user, the security parameters defining one or more
restrictions to access of the social network data, wherein
different authorized external users are associated with
different security parameters;
provide access to only a portion of the social network data
to the authorized requesting user in accordance with the
one or more security parameters identified by accessing
the one or more database tables, wherein the portion of
the social network data includes the exposed data and
excludes the private data;
receive a message from the authorized external user;
provide the message as an information update for inclusion
in an information feed, the information update capable
of being stored on one or more storage mediums; and

change the status of the requesting user from authorized to
unauthorized after expiration of a time period, wherein
an unauthorized requesting user is denied access to the
portion of the social network data.

22. The computer program product of claim 21, wherein
determining that the requesting user has an authorized status
includes:

identifying the requesting user as an external member of

one or more groups of internal users of the online social
network.

23. The computer program product of claim 22, wherein
providing access to the portion of the social network data
includes:

providing access to one or more pages of the one or more

groups of internal users.

24. The computer program product of claim 21, wherein
providing access to the portion of the social network data
includes:

providing the portion of the social network data in an

external user presentation capable of being displayed on
a display device.

#* #* #* #* #*

